RESEARCH ARTICLE

New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies

  • Linlin FU 1 ,
  • Jiahao XU 2 ,
  • Fan WU , 3
Expand
  • 1. Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
  • 2. Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300017, China
  • 3. Department of Mathematics, Nanjing University, Nanjing 210093, China

Received date: 17 Dec 2019

Accepted date: 02 Jun 2020

Published date: 15 Jun 2020

Copyright

2020 Higher Education Press

Abstract

We reconsider the continuity of the Lyapunov exponents for a class of smooth Schrödinger cocycles with a C2 cos-type potential and a weak Liouville frequency. We propose a new method to prove that the Lyapunov exponent is continuous in energies. In particular, a large deviation theorem is not needed in the proof.

Cite this article

Linlin FU , Jiahao XU , Fan WU . New proof of continuity of Lyapunov exponents for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Frontiers of Mathematics in China, 2020 , 15(3) : 467 -489 . DOI: 10.1007/s11464-020-0843-z

1
Bjerklöv K. The dynamics of a class of quasi-periodic Schrödinger cocycles. Ann Henri Poincaré, 2015, 16: 961–1031

DOI

2
Bochi J. Discontinuity of the Lyapunov exponent for non-hyperbolic cocycles. Preprint, 1999

3
Bochi J. Genericity of zero Lyapunov exponents. Ergodic Theory Dynam Systems, 2002, 22(6): 1667–1696

DOI

4
Bourgain J, Goldstein M. On nonperturbative localization with quasi-periodic potential. Ann of Math, 2000, 152: 835–879

DOI

5
Fröhlich J, Spencer T, Wittwer P. Localization for a class of one-dimensional quasiperiodic Schrödinger operators. Comm Math Phys, 1990, 132: 5–25

DOI

6
Fu L, Xu J. A new proof of continuity of Lyapunov exponents for a class of C2 quasiperiodic Schrödinger cocycles without LDT. Discrete Contin Dyn Syst, 2019, 33: 2915–2931

7
Furman A. On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann Inst Henri Poincaré, 1997, 33: 797–815

DOI

8
Goldstein M, Schlag W. Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions. Ann of Math, 2001, 154: 155–203

DOI

9
Jitomirskaya S, Marx C. Analytic quasi-periodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model. Comm Math Phys, 2012, 316(1): 237–267

DOI

10
Johnson R. Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J Differential Equations, 1986, 61: 54–78

DOI

11
Knill O. The upper Lyapunov exponent of SL(2, ℝ) cocycles: discontinuity and the problem of positivity. In: Arnold L, Crauel H, Eckmann J-P, eds. Lyapunov Exponents. Lecture Notes in Math, Vol 1486. Berlin: Springer, 1991, 86–97

DOI

12
Liang J, Kung P. Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies. Front Math China, 2017, 12: 607–639

DOI

13
Liang J, Wang Y, You J. Hölder continuity of Lyapunov exponent for a family of smooth Schrödinger cocycles. Preprint, 2018

14
Mañé R. Oseledec’s theorem from the generic viewpoint. In: Proc of Int Congress of Math, 1983, 1269–1276

15
Mañé R. The Lyapunov exponents of generic area preserving diffeomorphisms. In: Ledrappier F, Lewowicz J, Newhouse S, eds. International Conference on dynamical systems. Pitman Res Notes in Math Ser, Vol 362. London: Addison Wesley Longman, 1996, 110–119

16
Sinai Ya G. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J Stat Phys, 1987, 46: 861–909

DOI

17
Thouvenot J. An example of discontinuity in the computation of the Lyapunov exponents. Proc Steklov Inst Math, 1997, 216: 366–369

18
Wang Y, You J. Examples of discontinuity of Lyapunov exponent in smooth quasiperiodic cocycles. Duke Math J, 2013, 162: 2363–2412

DOI

19
Wang Y, You J. Examples of non-openness of smooth quasi-periodic cocycles with positive Lyapunov exponent. Preprint, 2014

20
Wang Y, Zhang Z. Uniform positivity and continuity of Lyapunov exponents for a class of C2 quasi-periodic Schrödinger cocycles. J Funct Anal, 2015, 268: 2525–2585

21
Wang Y, Zhang Z. Cantor spectrum for a class of C2 quasiperiodic Schrödinger operators. Int Math Res Not IMRN, 2017, 8: 2300–2336

22
Young L. Lyapunov exponents for some quasi-periodic cocycles. Ergodic Theory Dynam Systems, 1997, 17: 483–504

DOI

23
Zhang Z. Positive Lyapunov exponents for quasiperiodic Szegő cocycles. Nonlinearity, 2012, 25: 1771–1797

DOI

24
Zhang Z. Resolvent set of Schrödinger operators and uniform hyperbolicity. arXiv: 1305.4226

Outlines

/