Frontiers of Mathematics in China >
Auslander's defect formula and a commutative triangle in an exact category
Received date: 26 Mar 2018
Accepted date: 27 Dec 2019
Published date: 15 Feb 2020
Copyright
We prove Auslander's defect formula in an exact category, and obtain a commutative triangle involving the Auslander bijections and the generalized Auslander{Reiten duality.
Pengjie JIAO . Auslander's defect formula and a commutative triangle in an exact category[J]. Frontiers of Mathematics in China, 2020 , 15(1) : 115 -125 . DOI: 10.1007/s11464-020-0814-4
1 |
Auslander M. Functors and morphisms determined by objects. In: Gordon R, ed. Representation Theory of Algebras: Proceedings of the Philadelphia Conference. Lecture Notes in Pure and Applied Mathematics, Vol 37. New York: Marcel Dekker, 1978, 1–244
|
2 |
Auslander M, Reiten I, Smal S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1995
|
3 |
Chen X W. The Auslander bijections and universal extensions. Ark Mat, 2017, 55: 41–59
|
4 |
Iyama O. Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv Math, 2007, 210: 22–50
|
5 |
Jasso G, Kvamme S. An introduction to higher Auslander-Reiten theory. Bull Lond Math Soc, 2019, 51: 1–24
|
6 |
Jiao P. The generalized Auslander-Reiten duality on an exact category. J Algebra Appl, 2018, 17: 1850227
|
7 |
Jiao P, Le J. The Auslander-Reiten duality via morphisms determined by objects. J Pure Appl Algebra, 2018, 222: 807–817
|
8 |
Keller B. Chain complexes and stable categories. Manuscripta Math, 1990, 67: 379–417
|
9 |
Krause H. A short proof for Auslander's defect formula. Linear Algebra Appl, 2003, 365: 267–270
|
10 |
Lenzing H, Zuazua R. Auslander-Reiten duality for abelian categories. Bol Soc Mat Mex (3), 2004, 10: 169–177
|
11 |
Ringel C M. Morphisms determined by objects: the case of modules over Artin algebras. Illinois J Math, 2012, 56: 981–1000
|
12 |
Ringel C M. The Auslander bijections: how morphisms are determined by modules. Bull Math Sci, 2013, 3: 409–484
|
/
〈 | 〉 |