RESEARCH ARTICLE

Generalization of Erdős-Kac theorem

  • Yalin SUN , 1 ,
  • Lizhen WU 2
Expand
  • 1. School of Mathematical Sciences, East China Normal University, Shanghai 200241, China
  • 2. School of Mathematical Sciences and Statistics, Henan University, Kaifeng 475004, China

Received date: 23 Aug 2019

Accepted date: 14 Dec 2019

Published date: 15 Dec 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let ω(n) is the number of distinct prime factors of the natural number n,we consider two cases where is even and odd natural numbers, and then we prove a more general form of the classical Erdős-Kac theorem.

Cite this article

Yalin SUN , Lizhen WU . Generalization of Erdős-Kac theorem[J]. Frontiers of Mathematics in China, 2019 , 14(6) : 1303 -1316 . DOI: 10.1007/s11464-019-0808-2

1
Delange H. Sur les fonctions arithmétiques multiplicatives. Ann Sci Éc Norm Supér, 1961, 78: 273–304

DOI

2
Erdős P, Kac M. On the Gaussian law of error in the theory of additive functions. Proc Natl Acad Sci USA, 1939, 25: 206–207

DOI

3
Erdős P, Kac M. The Gaussian law of errors in the theory of additive number theoretic functions. Amer J Math, 1940, 62: 738–742

DOI

4
Granville A, Soundararajan K. Sieving and the Erdős-Kac theorem. In: Granville A, Rudnick Z, eds. Equidistribution in Number Theory, An Introduction. NATO Science Series, Sub-Series II: Mathematics, Physics and Chemistry, Vol 237. Dordrecht: Springer, 2007, 15–27

DOI

5
Halberstam H. On the distribution of additive number theoretic functions (I). J Lond Math Soc, 1955, 30: 43–53

DOI

6
Hardy G H, Ramanujan S. The normal number of prime factors of a number n.Quart J Math, 1917, 48: 76–92

7
Hardy G H, Wright E M. An Introduction to the Theory of Numbers. Oxford: Oxford Univ Press, 1979

8
Kac M. Probability methods in some problems of analysis and number theory. Bull Amer Math Soc, 1949, 55: 641–665

DOI

9
Sathe L G. On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors. J Indian Math Soc, 1953, 17: 63–141

10
Sathe L G. On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors. J Indian Math Soc, 1954, 18: 27–81

11
Selberg A. Note on the paper by L. G. Sathe. J Indian Math Soc, 1954, 18: 83–87

12
Tenenbaum G. Introduction to Analytic and Probabilistic Number Theory. Cambridge Stud Adv Math, Vol 46. Cambridge: Cambridge Univ Press, 1995

Outlines

/