RESEARCH ARTICLE

On 4-order Schrödinger operator and Beam operator

  • Dan LI , 1 ,
  • Junfeng LI 2
Expand
  • 1. School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
  • 2. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Received date: 16 Oct 2019

Accepted date: 27 Nov 2019

Published date: 15 Dec 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We show that there is no localization for the 4-order Schrödinger operator St,4f and Beam operator Btf, more precisely, on the one hand, we show that the 4-order Schrödinger operator St,4f does not converge pointwise to zero as t0 provided fHs() with compact support and 0<s<1/4 by constructing a counterexample in . On the other hand, we show that the Beam operator Btf also has the same property with the 4-order Schrödinger operator St,4f. Hence, we find that the Hausdorff dimension of the divergence set for St,4f and Btf is α1,S4(s)=α1,B(s)=1 as 0<s<1/4.

Cite this article

Dan LI , Junfeng LI . On 4-order Schrödinger operator and Beam operator[J]. Frontiers of Mathematics in China, 2019 , 14(6) : 1197 -1211 . DOI: 10.1007/s11464-019-0804-6

1
Bourgain J. Some new estimates on oscillatory integrals. In: Fefferman C, Fefferman R, Wainger S, eds. Essays on Fourier Analysis in Honor of Elias M. Stein. Princeton Math Ser, Vol 42. Princeton: Princeton Univ Press, 1995, 83–112

DOI

2
Bourgain J. On the Schrödinger maximal function in higher dimension. Proc Steklov Inst Math, 2013, 280(1): 46–60

DOI

3
Bourgain J. A note on the Schrödinger maximal function. J Anal Math, 2016, 130: 393–396

DOI

4
Carleson L. Some analytic problems related to statistical mechanics. In: Benedetto J J, ed. Euclidean Harmonic Analysis. Lecture Notes in Math, Vol 779. Berlin: Springer, 1980, 5–45

DOI

5
Dahlberg B E J, Kenig C E. A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Ricci F, Weiss G, eds. Harmonic Analysis. Lecture Notes in Math, Vol 908. Berlin: Springer, 1982, 205–209

DOI

6
Demeter C, Guo S. Schrödinger maximal function estimates via the pseudoconformal transformation. arXiv: 1608.07640

7
Du X, Guth L, Li X. A sharp Schrödinger maximal estimate in ℝ2 Ann of Math (2), 2017, 186(2): 607–640

DOI

8
Du X, Guth L, Li X, Zhang R. Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates. Forum Math Sigma, 2018, 6: e14 (18 pp)

DOI

9
Du X, Zhang R. Sharp L2 estimate of Schrödinger maximal function in higher dimensions. arXiv: 1805.02775

10
Lee S. On pointwise convergence of the solutions to Schrödinger equations in R2: Int Math Res Not IMRN, 2006, Art ID 32597 (21 pp)

DOI

11
Luca R, Rogers K. An improved necessary condition for the Schrödinger maximal estimate. arXiv: 1506.05325

12
Miao C, Yang J, Zheng J. An improved maximal inequality for 2D fractional order Schrödinger operators. Studia Math, 2015, 230(2): 121–165

DOI

13
Moyua A, Vargas A, Vega L. Schrödinger maximal function and restriction properties of the Fourier transform. Int Math Res Not IMRN, 1996, (16): 793–815

DOI

14
Niu Y. The Application of Harmonic Analysis in Estimate for Solutions to Generalized Dispersive Equation. Ph D Thesis. Beijing: Beijing Normal University, 2015

15
Sjolin P. Regularity of solutions to the Schrödinger equation. Duke Math J, 1987, 55(3): 699–715

DOI

16
Sjölin P. Nonlocalization of operators of Schrödinger type. Ann Acad Sci Fenn Math, 2013, 38(1): 141–147

DOI

17
Sjölin P. On localization of Schrödinger means. arXiv: 1704.00927

18
Tao T, Vargas A. A bilinear approach to cone multipliers. II. Applications. Geom Funct Anal, 2000, 10(1): 216–258

DOI

19
Vega L. E1 Multiplicador de Schrödinger, la Function Maximal y los Operadores de Restriccion. Ph D Thesis. Madrid: Departamento de Matematicas, Univ Autonoma de Madrid, 1988

20
Vega L. Schrödinger equations: pointwise convergence to the initial data. Proc Amer Math Soc, 1988, 102(4): 874–878

DOI

Outlines

/