RESEARCH ARTICLE

Maximal Cohen-Macaulay modules over a noncommutative 2-dimensional singularity

  • Xiaoshan QIN 1,2 ,
  • Yanhua WANG 3 ,
  • James ZHANG , 4
Expand
  • 1. China Academy of Electronics and Information Technology, Beijing 100041, China
  • 2. School of Mathematical Sciences, Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
  • 3. School of Mathematics, Shanghai Key Laboratory of Financial Information Technology, Shanghai University of Finance and Economics, Shanghai 200433, China
  • 4. Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Received date: 22 May 2019

Accepted date: 16 Sep 2019

Published date: 15 Oct 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We study properties of graded maximal Cohen-Macaulay modules over an -graded locally finite, Auslander Gorenstein, and Cohen-Macaulay algebra of dimension two. As a consequence, we extend a part of the McKay correspondence in dimension two to a more general setting.

Cite this article

Xiaoshan QIN , Yanhua WANG , James ZHANG . Maximal Cohen-Macaulay modules over a noncommutative 2-dimensional singularity[J]. Frontiers of Mathematics in China, 2019 , 14(5) : 923 -940 . DOI: 10.1007/s11464-019-0793-5

1
Ajitabh K, Smith S P, Zhang J J. Auslander-Gorenstein rings. Comm Algebra, 1998, 26: 2159–2180

DOI

2
Brown K, Qin X-S, Wang Y-H, Zhang J J. Pretzelization (in preparation)

3
Chan D, Wu Q-S, Zhang J J. Pre-balanced dualizing complexes. Israel J Math, 2002, 132: 285–314

DOI

4
Chan K, Kirkman E, Walton C, Zhang J J. Quantum binary polyhedral groups and their actions on quantum planes. J Reine Angew Math, 2016, 719: 211–252

DOI

5
Chan K, Kirkman E, Walton C, Zhang J J. McKay correspondence for semisimple Hopf actions on regular graded algebras, I. J Algebra, 2018, 508: 512–538

DOI

6
Chan K, Kirkman E, Walton C, Zhang J J. McKay correspondence for semisimple Hopf actions on regular graded algebras, II. J Noncommut Geom, 2019, 13(1): 87–114

DOI

7
Dokuchaev M, Gubareni N M, Futorny V M, Khibina M A, Kirichenko V V. Dynkin diagrams and spectra of graphs. São Paulo J Math Sci, 2013, 7(1): 83–104

DOI

8
Happel D, Preiser U, Ringel C M. Binary polyhedral groups and Euclidean diagrams. Manuscripta Math, 1980, 31(13): 317–329

DOI

9
Herzog J. Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln. Math Ann, 1978, 233(1): 21–34

DOI

10
Jørgensen P. Finite Cohen-Macaulay type and smooth non-commutative schemes. Canad J Math, 2008, 60(2): 379–390

DOI

11
Krause G R, Lenagan T H. Growth of Algebras and Gelfand-Kirillov Dimension. Res Notes in Math, Vol 116. Boston: Pitman Adv Publ Program, 1985

12
Lam T Y. A First Course in Noncommutative Rings. 2nd ed. Grad Texts in Math, Vol 131. New York: Springer-Verlag, 2001

DOI

13
Levasseur T. Some properties of non-commutative regular graded rings. Glasg J Math, 1992, 34: 277–300

DOI

14
Martnez-Villa R. Introduction to Koszul algebras. Rev Un Mat Argentina, 2007, 48(2): 67–95

15
Qin X-S, Wang Y-H, Zhang J J. Noncommutative quasi-resolutions. J Algebra, 2019, 536: 102–148

DOI

16
Reyes M, Rogalski D. A twisted Calabi-Yau toolkit. arXiv: 1807.10249

17
Reyes M, Rogalski D. Growth of graded twisted Calabi-Yau algebras. arXiv: 1808.10538

18
Reyes M, Rogalski D, Zhang J J. Skew Calabi-Yau algebras and homological identities. Adv Math, 2014, 264: 308–354

DOI

19
Smith J H. Some properties of the spectrum of a graph. In: Guy R, Hanani H, Sauer N, Schönheim J, eds. Combinatorial Structures and their Applications. New York: Gordon and Breach, 1970, 403–406

20
Ueyama K. Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities. J Algebra, 2013, 383: 85–103

DOI

21
Van den Bergh M. Existence theorems for dualizing complexes over non-commutative graded and filtered rings. J Algebra, 1997, 195(2): 662–679

DOI

22
Van den Bergh M. Three-dimensional fiops and noncommutative rings. Duke Math J, 2004, 122(3): 423–455

DOI

23
Van den Bergh M. Non-commutative crepant resolutions. In: Laudal O A, Piene R, eds. The Legacy of Niels Henrik Abel. Berlin: Springer, 2004, 749–770

DOI

24
Weispfenning S. Properties of the fixed ring of a preprojective algebra. J Algebra, 2019, 517: 276–319

DOI

25
Yekutieli A. Dualizing complexes over noncommutative graded algebras. J Algebra, 1992, 153(1): 41{84

DOI

26
Zhang J J. Connected graded Gorenstein algebras with enough normal elements. J Algebra, 1997, 189(3): 390–405

DOI

Outlines

/