RESEARCH ARTICLE

Estimations on upper and lower bounds of solutions to a class of tensor complementarity problems

  • Yang XU ,
  • Weizhe GU ,
  • Zheng-Hai HUANG
Expand
  • School of Mathematics, Tianjin University, Tianjin 300350, China

Received date: 04 Mar 2019

Accepted date: 07 May 2019

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We introduce a class of structured tensors, called generalized row strictly diagonally dominant tensors, and discuss some relationships between it and several classes of structured tensors, including nonnegative tensors, B-tensors, and strictly copositive tensors. In particular, we give estimations on upper and lower bounds of solutions to the tensor complementarity problem (TCP) when the involved tensor is a generalized row strictly diagonally dominant tensor with all positive diagonal entries. The main advantage of the results obtained in this paper is that both bounds we obtained depend only on the tensor and constant vector involved in the TCP; and hence, they are very easy to calculate.

Cite this article

Yang XU , Weizhe GU , Zheng-Hai HUANG . Estimations on upper and lower bounds of solutions to a class of tensor complementarity problems[J]. Frontiers of Mathematics in China, 2019 , 14(3) : 661 -671 . DOI: 10.1007/s11464-019-0770-z

1
Bai X L, Huang Z H, Li X. Stability of solutions and continuity of solution maps of tensor complementarity problems. Asia-Pac J Oper Res, 2019, 36(2): 1940002 (19pp)

DOI

2
Bai X L, Huang Z H, Wang Y. Global uniqueness and solvability for tensor complementarity problems. J Optim Theory Appl, 2016, 170(1): 72–84

DOI

3
Balaji R, Palpandi K. Positive definite and Gram tensor complementarity problems. Optim Lett, 2018, 12(3): 639–648

DOI

4
Che M L, Qi L, Wei Y M. Positive-definite tensors to nonlinear complementarity problems. J Optim Theory Appl, 2016, 168(2): 475–487

DOI

5
Chen H, Qi L, Song Y. Column sufficient tensors and tensor complementarity problems. Front Math China, 2018, 13(2): 255–276

DOI

6
Ding W, Luo Z, Qi L. P-tensors, P0-tensors, and their applications. Linear Algebra Appl, 2018, 555: 336–354

DOI

7
Du S, Zhang L. A mixed integer programming approach to the tensor complementarity problem. J Global Optim, 2019, 73(4): 789–800

DOI

8
Gowda MS. Polynomial complementarity problems. Pac J Optim, 2017, 13(2): 227–241

9
Gowda M S, Luo Z, Qi L, Xiu N H. Z-tensors and complementarity problems. arXiv: 1510.07933v2

10
Guo Q, Zheng M M, Huang Z H. Properties of S-tensors. Linear Multilinear Algebra, 2019, 67(4): 685–696

DOI

11
Han L X. A continuation method for tensor complementarity problems. J Optim Theory Appl, 2019, 180(3): 949–963

DOI

12
Hieu Vu T. On the R0-tensors and the solution map of tensor complementarity problems. J Optim Theory Appl, 2019, 181(1): 163–183

DOI

13
Hu S, Huang Z H, Wang J. Error bounds for the solution set of quadratic complementarity problems. J Optim Theory Appl, 2018, 179(3): 983–1000

DOI

14
Huang Z H, Qi L. Formulating an n-person noncooperative game as a tensor complementarity problem. Comput Optim Appl, 2017, 66(3): 557–576

DOI

15
Huang Z H, Suo Y Y, Wang J. On Q-tensors. arXiv: 1509.03088v1

16
Ling L, He H, Ling C. On error bounds of polynomial complementarity problems with structured tensors. Optimization, 2018, 67(2): 341–358

DOI

17
Liu D, Li W, Vong S W. Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear Algebra, 2018, 66(9): 1726–1749

DOI

18
Luo Z, Qi L, Xiu N. The sparsest solutions to Z-tensor complementarity problems. Optim Lett, 2017, 11(3): 471–482

DOI

19
Qi L. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl, 2013, 439(1): 228–238

DOI

20
Song Y, Mei W. Structural properties of tensors and complementarity problems. J Optim Theory Appl, 2018, 176(2): 289–305

DOI

21
Song Y, Qi L. Properties of some classes of structured tensors. J Optim Theory Appl, 2015, 165(3): 854–873

DOI

22
Song Y, Qi L. Tensor complementarity problem and semi-positive tensors. J Optim Theory Appl, 2016, 169(3): 1069–1078

DOI

23
Song Y, Qi L. Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Optim Lett, 2017, 11(7): 1407–1426

DOI

24
Song Y, Qi L. Properties of tensor complementarity problem and some classes of structured tensors. Ann Appl Math, 2017, 33(3): 308–323

25
Song Y, Yu G. Properties of solution set of tensor complementarity problem. J Optim Theory Appl, 2016, 170(1): 85–96

DOI

26
Tawhid M A, Rahmati, S. Complementarity problems over a hypermatrix (tensor) set. Optim Lett, 2018, 12(6): 1443–1454

DOI

27
Wang J, Hu S, Huang Z H. Solution sets of quadratic complementarity problems. J Optim Theory Appl, 2018, 176(1): 120–136

DOI

28
Wang X, Chen H, Wang Y. Solution structures of tensor complementarity problem. Front Math China, 2018, 13(4): 935–945

DOI

29
Wang Y, Huang Z H, Bai X L. Exceptionally regular tensors and tensor complementarity problems. Optim Methods Softw, 2016, 31(4): 815–828

DOI

30
Wang Y, Huang Z H, Qi L. Global uniqueness and solvability of tensor variational inequalities. J Optim Theory Appl, 2018, 177(1): 137–152

DOI

31
Xie S L, Li D H, Xu H R. An iterative method for finding the least solution to the tensor complementarity problem. J Optim Theory Appl, 2017, 175(1): 119–136

DOI

32
Zhang K, Chen H, Zhao P. A potential reduction method for tensor complementarity problems. J Ind Manag Optim, 2019, 15(2): 429–443

DOI

33
Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35(2): 437–452

DOI

34
Zhao X, Fan J. A semidefinite method for tensor complementarity problems. Optim Methods Softw, 2018,

DOI

35
Zheng M M, Zhang Y, Huang Z H. Global error bounds for the tensor complementarity problem with a P-tensor. J Ind Manag Optim, 2019, 15(2): 933–946

DOI

Outlines

/