RESEARCH ARTICLE

Lump wave and hybrid solutions of a generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles

  • Hui WANG ,
  • Shoufu TIAN ,
  • Tiantian ZHANG ,
  • Yi CHEN
Expand
  • School of Mathematics and Institute of Mathematical Physics, China University of Mining and Technology, Xuzhou 221116, China

Received date: 01 Apr 2019

Accepted date: 30 May 2019

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We investigate a generalized (3+ 1)-dimensional nonlinear wave equation, which can be used to depict many nonlinear phenomena in liquid containing gas bubbles. By employing the Hirota bilinear method, we derive its bilinear formalism and soliton solutions succinctly. Meanwhile, the first-order lump wave solution and second-order lump wave solution are well presented based on the corresponding two-soliton solution and four-soliton solution. Furthermore, two types of hybrid solutions are systematically established by using the long wave limit method. Finally, the graphical analyses of the obtained solutions are represented in order to better understand their dynamical behaviors.

Cite this article

Hui WANG , Shoufu TIAN , Tiantian ZHANG , Yi CHEN . Lump wave and hybrid solutions of a generalized (3+ 1)-dimensional nonlinear wave equation in liquid with gas bubbles[J]. Frontiers of Mathematics in China, 2019 , 14(3) : 631 -643 . DOI: 10.1007/s11464-019-0775-7

1
Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge Univ Press, 1991

DOI

2
Ablowitz M J, Satsuma J. Solitons and rational solutions of nonlinear evolution equations. J Math Phys, 1978, 19(10): 2180–2186

DOI

3
Amadou Y, Betchewe G, Justin M, Doka S Y, Crepin K T. Discrete exact solutions for the double-well potential model through the discrete tanh method. Eur Phys J Plus, 2015, 130(1): 13

DOI

4
Bluman G W, Kumei S. Symmetries and Differential Equations. New York: Springer-Verlag, 1989

DOI

5
Cao Y L, He J S, Mihalache D. Families of exact solutions of a new extended (2+ 1)-dimensional Boussinesq equation. Nonlinear Dynam, 2018, 91: 2593–2605

DOI

6
Chen M D, Li X, Wang Y, Li B. A pair of resonance stripe solitons and lump solutions to a reduced (3+ 1)-dimensional nonlinear evolution equation. Commun Theor Phys (Beijing), 2017, 67: 595–600

DOI

7
Chen S T, Ma W X. Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. Front Math China, 2018, 13(3): 525–534

DOI

8
Dai C Q, Huang W H. Multi-rogue wave and multi-breather solutions in PT-symmetric coupled waveguides. Appl Math Lett, 2014, 32: 35–40

DOI

9
Deng G F, Gao Y T. Integrability, solitons, periodic and travelling waves of a generalized (3+ 1)-dimensional variable-coefficient nonlinear-wave equation in liquid with gas bubbles. Eur Phys J Plus, 2017, 132(6): 255

DOI

10
Dong M J, Tian S F, Wang X B, Zhang T T. Lump-type solutions and interaction solutions in the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Anal Math Phys, 2018, https://doi.org/10.1007/s13324-018-0258-0

DOI

11
Dong M J, Tian S F, Yan X W, Zou L. Solitary waves, homoclinic breather waves and rogue waves of the (3+ 1)-dimensional Hirota bilinear equation. Comput Math Appl, 2018, 75: 957–964

DOI

12
Eslami M, Mirzazadeh M. Topological 1-soliton solution of nonlinear Schrödinger equation with dual-power law nonlinearity in nonlinear optical fibers. Eur Phys J Plus, 2013, 128: 140

DOI

13
Eslami M, Neirameh A. New solitary and double periodic wave solutions for a generalized sinh-Gordon equation. Eur Phys J Plus, 2014, 129: 54

DOI

14
Fan E G. The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys Lett A, 2011, 375(3): 493–497

DOI

15
Feng L L, Zhang T T. Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation. Appl Math Lett, 2018, 78: 133–140

DOI

16
Gao X Y. Density-uctuation symbolic computation on the (3+1)-dimensional variablecoefficient Kudryashov-Sinelshchikov equation for a bubbly liquid with experimental support. Modern Phys Lett B, 2016, 30(15): 1650217

DOI

17
Gao X Y. Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl Math Lett, 2017, 73: 143–149

DOI

18
Gao X Y. Mathematical view with observational/experimental consideration on certain (2+ 1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl Math Lett, 2019, 91: 165–172

DOI

19
Gilson C, Lambert F, Nimmo J, Willox R. On the combinatorics of the Hirota D-operators. Proc R Soc Lond A, 1996, 452: 223–234

DOI

20
Gorshkov K A, Pelinovsky D E, Stepanyants Yu A. Normal and anomalous scattering, formation and decay of bound states of two-dimensional solitons described by the Kadomtsev-Petviashvili equation. JETP, 1993, 104: 2704–2720

21
Guo D, Tian S F, Zhang T T. Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system. Nonlinear Dynam, 2018, 94: 1–13

DOI

22
Guo D, Tian S F, Zhang T T. Integrability, soliton solutions and modulation instability analysis of a (2+ 1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation. Comput Math Appl, 2019, 77(3): 770–778

DOI

23
Hirota R. The Direct Method in Soliton Theory. Cambridge: Cambridge Univ Press, 2004

DOI

24
Hu C C, Tian B, Wu X Y, Yuan Y Q, Du Z. Mixed lump-kink and rogue wave-kink solutions for a (3+ 1)-dimensional B-type Kadomtsev-Petviashvili equation in uid mechanics. Eur Phys J Plus, 2018, 133(2): 40

DOI

25
Kudryashov N A, Sinelshchikov D I. Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer. Phys Lett A, 2010, 374: 2011–2016

DOI

26
Kudryashov N A, Sinelshchikov D I. Nonlinear waves in liquids with gas bubbles with account of viscosity and heat transfer. Fluid Dyn, 2010, 45(1): 96–112

DOI

27
Lambert F, Springael J. Soliton equations and simple combinatorics. Acta Appl Math, 2008, 102: 147–178

DOI

28
Lü X, Ma W X. Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dynam, 2016, 85: 1217–1222

DOI

29
Lü X, Wang J P, Lin F H, Zhou X W. Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water. Nonlinear Dynam, 2018, 91: 1249–1259

DOI

30
Ma W X. Lump solutions to the Kadomtsev-Petviashvili equation. Phys Lett A, 2015, 379: 1975–1978

DOI

31
Ma W X, Qin Z Y, Lü X. Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dynam, 2016, 84: 923–931

DOI

32
Ma W X, Zhou Y. Lump solutions to particle Differential equations via Hirota bilinear forms. J Differential Equations, 2018, 264: 2633–2659

DOI

33
Manakov S V, Zakharov V E, Bordag L A, Its A R, Matveev V B. Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction. Phys Lett A, 1977, 63: 205–206

DOI

34
Matveev V B, Salle M A. Darboux Transformation and Solitons. Berlin: Springer-Verlag, 1991

DOI

35
Peng W Q, Tian S F, Zhang T T. Analysis on lump, lumpoff and rogue waves with predictability to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. Phys Lett A, 2018, 241: 1–8

DOI

36
Peng W Q, Tian S F, Zhang T T. Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. EPL, 2018, 123: 50005

DOI

37
Peng W Q, Tian S F, Zhang T T. Breather waves and rational solutions in the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Comput Math Appl, 2019, 77(3): 715–723

DOI

38
Peng W Q, Tian S F, Zou L, Zhang T T. Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Nonlinear Dynam, 2018, 93: 1841–1851

DOI

39
Qin C Y, Tian S F, Wang X B, Zhang T T, Li J. Rogue waves, bright-dark solitons and traveling wave solutions of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Comput Math Appl, 2018, 75: 4221–4231

DOI

40
Qin C Y, Tian S F, Zou L, Ma W X. Solitary wave and quasi-periodic wave solutions to a (3+ 1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation. Adv Appl Math Mech, 2018, 10: 948–977

DOI

41
Qin C Y, Tian S F, Zou L, Zhang T T. Lie symmetry analysis, conservation laws and exact solutions of fourth-order time fractional Burgers equation. J Appl Anal Comput, 2018, 8: 1727–1746

42
Rao J, Cheng Y, He J. Rational and semirational solutions of the nonlocal Davey-Stewartson equations. Stud Appl Math, 2017, 139(4): 568–598

DOI

43
Rogers C, Schief W K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge Univ Press, 2002

DOI

44
Satsuma J, Ablowitz M J. Two-dimensional lumps in nonlinear dispersive systems. J Math Phys, 1979, 20(7): 1496–1503

DOI

45
Tala-Tebue E, Tsobgni-Fozap D C, Kenfack-Jiotsa A, Kofane T C. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G′=G)-expansion method including the generalized Riccati equation. Eur Phys J Plus, 2014, 129: 136

DOI

46
Tian S F. Initial-boundary value problems for the general coupled nonlinear Schrödinger equations on the interval via the Fokas method. J Differential Equations, 2017, 262: 506–558

DOI

47
Tian S F. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Commun Pure Appl Anal, 2018, 17: 923–957

DOI

48
Tian S F. Asymptotic behavior of a weakly dissipative modified two-component Dullin-Gottwald-Holm system. Appl Math Lett, 2018, 83: 65–72

DOI

49
Tian S F. Infinite propagation speed of a weakly dissipative modified two-component Dullin-Gottwald-Holm system. Appl Math Lett, 2019, 89: 1–7

DOI

50
Tian S F, Zhang H Q. Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J Math Anal Appl, 2010, 371: 585–608

DOI

51
Tian S F, Zhang H Q. On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. J Phys A, 2012, 45: 055203

DOI

52
Tian S F, Zhang H Q. On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in uids. Stud Appl Math, 2014, 132: 212–246

DOI

53
Tian S F, Zhang T T. Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc Amer Math Soc, 2018, 146: 1713–1729

DOI

54
Tu J M, Tian S F, Xu M J, Song X Q, Zhang T T. Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles. Nonlinear Dynam, 2016, 83: 1199–1215

DOI

55
Wang X B, Tian S F, Zhang T T. Characteristics of the breather and rogue waves in a (2+ 1)-dimensional nonlinear Schrödinger equation. Proc Amer Math Soc, 2018, 146: 3353–3365

DOI

56
Wang X B, Zhang T T, Dong M J. Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation. Appl Math Lett, 2018, 86: 298–304

DOI

57
Wazwaz A M, Xu G Q. Negative-order modified KdV equations: multiple soliton and multiple singular soliton solutions. Math Methods Appl Sci, 2016, 39(4): 661–667

DOI

58
Wu X Y, Tian B, Liu L, Sun Y. Rogue waves for a variable-coefficient Kadomtsev-Petviashvili equation in uid mechanics. Comput Math Appl, 2018, 76(2): 215–223

DOI

59
Xu M J, Tian S F, Tu J M, Ma P L, Zhang T T. Quasi-periodic wave solutions with asymptotic analysis to the Saweda-Kotera-Kadomtsev-Petviashvili equation. Eur Phys J Plus, 2015, 130(8): 174

DOI

60
Yan X W, Tian S F, Dong M J, Zou L. Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+ 1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dynam, 2018, 92(2): 708–720

DOI

61
Yan X W, Tian S F, Dong M J, Zou L, Zhang T T. Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation. Comput Math Appl, 2018, 76: 179–186

DOI

62
Yang J Y, Ma W X. Abundant interaction solutions of the KP equation. Nonlinear Dynam, 2017, 89(2): 1539–1544

DOI

63
Yuan Y Q, Tian B, Liu L, Wu X Y, Sun Y. Solitons for the (2+ 1)-dimensional Konopelchenko-Dubrovsky equations. J Math Anal Appl, 2018, 460(1): 476–486

DOI

64
Yue Y F, Huang L L, Chen Y. N-solitons, breathers, lumps and rogue wave solutions to a (3+ 1)-dimensional nonlinear evolution equation. Comput Math Appl, 2018, 75: 2538–2548

DOI

65
Zhang X E, Chen Y, Tang X Y. Rogue wave and a pair of resonance stripe solitons to KP equation. Comput Math Appl, 2018, 76: 1938–1949

DOI

66
Zhang Y, Dong H H, Zhang X E, Yang H W. Rational solutions and lump solutions to the generalized (3+ 1)-dimensional Shallow Water-like equation. Comput Math Appl, 2017, 73: 246–252

DOI

67
Zhang Y, Liu Y P, Tang X Y. M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dynam, 2018, 93: 2533–2541

DOI

68
Zhao H Q, Ma W X. Mixed lump-kink solutions to the KP equation. Comput Math Appl, 2017, 74: 1399–1405

DOI

Outlines

/