RESEARCH ARTICLE

Global regularity for 3D magneto-hydrodynamics equations with only horizontal dissipation

  • Yutong WANG 1 ,
  • Weike WANG , 1,2
Expand
  • 1. School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 220104, China
  • 2. Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 220104, China

Received date: 12 Dec 2017

Accepted date: 04 Jan 2019

Published date: 22 Mar 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We investigate the Cauchy problem for the 3D magnetohydrodynamics equations with only horizontal dissipation for the small initial data. With the help of the dissipation in the horizontal direction and the structure of the system, we analyze the properties of the decay of the solution and apply these decay properties to get the global regularity of the solution. In the process, we mainly use the frequency decomposition in Green's function method and energy method.

Cite this article

Yutong WANG , Weike WANG . Global regularity for 3D magneto-hydrodynamics equations with only horizontal dissipation[J]. Frontiers of Mathematics in China, 2019 , 14(1) : 149 -175 . DOI: 10.1007/s11464-019-0746-z

1
Abidi H, Hmidi T, Keraani S. On the global regularity of axisymmetric Navier-Stokes-Boussinesq system. Discrete Contin Dyn Syst, 2007, 29(3): 737–756

DOI

2
Adams R A, Fournier J J F. Sobolev Spaces. 2nd. Pure Appl Math. Amsterdam: Elsevier/Academic Press, 2003

3
Cao C S, Dipendra R, Wu J H. The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J Diérential Equations, 2013, 254(7): 2661–2681

DOI

4
Cao C S, Wu J H. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv Math, 2011, 226(2): 1803–1822

DOI

5
Chen J, Li Y C, Wang W K. Global classical solutions to the Cauchy problem of conservation laws with degenerate diffusion. J Diérential Equations, 2016, 260(5): 4657–4682

DOI

6
Danchin R. Axisymmetric incompressible ows with bounded vorticity. Russian Math Surveys, 2007, 62(3): 475–496

DOI

7
Duvaut D, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch Ration Mech Anal, 1972, 46: 241–279

DOI

8
Hmidi T, Keraani S, Rousset F. Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27(5): 1227–1246

9
Hmidi T, Rousset F. Global well-posedness for the Euler-Boussinesq system with axisymmetric data. J Funct Anal, 2011, 260(3): 745–796

DOI

10
Jiu Q S, Liu J T. Global regularity for the 3D axisymmetric MHD equations with horizontal dissipation and vertical magnetic diffusion. Discrete Contin Dyn Syst, 2015, 35(1): 301–322

DOI

11
Ladyzhenskaya O A. Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry. Zap Nauchn Sem Leningrad Otdel Mat Inst Steklov (LOMI), 1968, 7: 155–177

12
Lei Z. On axially symmetric incompressible magnetohydrodynamics in three dimension. J Diérential Equations, 2015, 259(7): 3202–3215

DOI

13
Lei Z, Zhou Y. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin Dyn Syst, 2009, 25(2): 575–583

DOI

14
Leonardi S, Málek J, Necas J, Pokorný M. On axially symmetric ows in R3: Z Anal Anwend, 1999, 18(3): 639–649

DOI

15
Li T, Chen Y M. Nonlinear Evolution Equations. Beijing: Science Press, 1989 (in Chinese)

16
Lin F H, Xu L, Zhang P. Global small solutions of 2-D incompressible MHD system. J Diérential Equations, 2015, 259(10): 5440–5485

DOI

17
Miao C X, Zheng X X. On the global well-posedness for the Boussinesq system with horizontal dissipation. Comm Math Phys, 2013, 321(1): 33–67

DOI

18
Miao C X, Zheng X X. Global well-posedness for axisymmetric Boussinesq system with horizontal viscosity. J Math Pures Appl, 2014, 101(6): 842–872

DOI

19
Ren X X, Wu J H, Xiang Z Y, Zhang Z F. Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J Funct Anal, 2014, 267(2): 503–541

DOI

20
Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36(5): 635–664

DOI

21
Ukhovskii M R, Yudovich V I. Axially symmetric ows of ideal and viscous uids filling the whole space. J Appl Math Mech, 1968, 32: 52–61

DOI

22
Zhang T. Global solutions to the 2D viscous, non-resistive MHD systems with large background magnetic field. J Diérential Equations, 2016, 260(6): 5450–5480

DOI

Outlines

/