RESEARCH ARTICLE

Solution structures of tensor complementarity problem

  • Xueyong WANG ,
  • Haibin CHEN ,
  • Yiju WANG
Expand
  • School of Management Science, Qufu Normal University, Rizhao 276800, China

Received date: 21 May 2017

Accepted date: 07 Nov 2017

Published date: 14 Aug 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We introduce two new types of tensors called the strictly semi-monotone tensor and the range column Sufficient tensor and explore their structure properties. Based on the obtained results, we make a characterization to the solution of tensor complementarity problem.

Cite this article

Xueyong WANG , Haibin CHEN , Yiju WANG . Solution structures of tensor complementarity problem[J]. Frontiers of Mathematics in China, 2018 , 13(4) : 935 -945 . DOI: 10.1007/s11464-018-0675-2

1
Bai X, Huang Z,Wang Y. Global uniqueness and solvability for tensor complementarity problems. J Optim Theory Appl, 2016, 170: 1–13

DOI

2
Bu C, Zhang X, Zhou J, Wang W, Wei Y. The inverse, rank and product of tensor. Linear Algebra Appl, 2014, 446: 269–280

DOI

3
Che M, Qi L, Wei Y. Positive definite tensors to nonlinear complementarity problems. J Optim Theory Appl, 2016, 168: 475–487

DOI

4
Chen H, Chen Y, Li G, Qi L. A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test. Numer Linear Algebra Appl, 2017, https://doi.org/10.1002/nla.2125

DOI

5
Chen H, Huang Z, Qi L. Copositivity detection of tensors: theory and algorithm. J Optim Theory Appl, 2017, 174: 746–761

DOI

6
Chen H, Huang Z, Qi L. Copositive tensor detection and its applications in physics and hypergraphs. Comput Optim Appl, 2017, https://doi.org/10.1007/s10589-017-9938-1

DOI

7
Chen H, Wang Y. On computing minimal H-eigenvalue of sign-structured tensors. Front Math China, 2017, 12(6): 1289–1302

DOI

8
Chen H, Wang Y, Zhao H. A family of higher-order convergent iterative methods for computing the Moore-Penrose inverse. Appl Math Comput, 2011, 218(8): 4012–4016

DOI

9
Cottle R, Pang J, Venkateswaran V. Sufficient matrices and linear complementarity problem. Linear Algebra Appl, 1989, 114-115: 231–249

DOI

10
Facchinei F, Pang J. Finite Dimensional Variational Inequalities and Complementarity Problems.New York: Springer, 2003

11
Huang Z, Qi L. Formulating an n-person noncooperative game as a tensor complementarity problem. Comput Optim Appl, 2016, 66: 1–20

12
Jeyaraman I, Sivakumar C. Complementarity properties of singular M-matrices. Linear Algebra Appl, 2016, 510: 42–63

DOI

13
Kolda T, Bader B. Tensor decompositions and applications. SIAM Review, 2009, 51: 455–500

DOI

14
Ling C, He H, Qi L. On the cone eigenvalue complementarity problem for higher-order tensor. Comput Optim Appl, 2016, 63: 1–26

DOI

15
Luo Z, Qi L, Xiu N. The sparsest solutions to Z-tensor complementarity problem. Optim Lett, 2015, 11: 471–482

DOI

16
Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Math Program, 2009, 118: 301–316

DOI

17
Qi L, Wang Y, Wu Ed X. D-eigenvalues of diffusion kurtosis tensors. J Comput Appl Math, 2008, 221: 150–157

DOI

18
Qi L, Yu G, Wu E. Higher order positive semi-definite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3: 416–433

DOI

19
Song Y, Qi L. Tensor complementarity problem and semi-positive tensor. J Optim Theory Appl, 2016, 169(3): 1069–1078

DOI

20
Song Y, Yu G. Properties of solution set of tensor complementarity problem. J Optim Theory Appl, 2016, 170: 85–96

DOI

21
Wang G, Zhou G, Caccetta L. Z-eigenvalue inclusion theorems for tensors. Discrete Contin Dyn Syst Ser B, 2017, 22(1): 187–198

DOI

22
Wang Y, Caccetta L, Zhou G. Convergence analysis of a block improvement method for polynomial optimization over unit spheres. Numer Linear Algebra Appl, 2015, 22: 1059–1076

DOI

23
Wang Y, Liu W, Caccetta L, Zhou G. Parameter selection for nonnegative l1 matrix/tensor sparse decomposition. Oper Res Lett, 2015, 43: 423–426

DOI

24
Wang Y, Qi L, Luo S, Xu Y. An alternative steepest direction method for the optimization in evaluating geometric discord. Pac J Optim, 2014, 10: 137–149

25
Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16: 589–601

DOI

26
Wang Y, Zhang K, Sun H. Criteria for strong H-tensors. Front Math China, 2016, 11: 577–592

DOI

27
Wang Y, Zhou G, Caccetta L. Nonsingular H-tensor and its criteria. J Ind Manag Optim, 2016, 12: 1173–1186

DOI

28
Zhang K, Wang Y. An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms. J Comput Appl Math, 2016, 305: 1–10

DOI

29
Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452

DOI

30
Zhang X, Ling C, Qi L. The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J Matrix Anal Appl, 2012, 33: 806–821

DOI

Outlines

/