Frontiers of Mathematics in China >
Derivatives of meromorphic functions and exponential functions
Received date: 06 May 2015
Accepted date: 09 Feb 2018
Published date: 28 Mar 2018
Copyright
We take up a new method to prove a Picard type theorem. Let f be a meromorphic function in the complex plane, whose zeros are multiple, and let R be a Möbius transformation. If has infinitely many solutions in the complex plane.
Key words: Meromorphic function; quasinormal family; Picard theorem
Pai YANG , Liangwen LIAO , Qiaoyu CHEN . Derivatives of meromorphic functions and exponential functions[J]. Frontiers of Mathematics in China, 2018 , 13(2) : 417 -433 . DOI: 10.1007/s11464-018-0691-2
1 |
Bergweiler W, Eremenko A. On the singularities of the inverse to a meromorphic function of finite order. Rev Mat Iberoam, 1995, 11: 355–373
|
2 |
Chuang C T. Normal Families of Meromorphic Functions. Singapore: World Scientific, 1993
|
3 |
Hayman W K. Picard values of meromorphic functions and their derivatives. Ann of Math, 1959, 70(1): 9–42
|
4 |
Nevo S. Applications of Zalcmans lemma to Qm-normal families. Analysis (Munich), 2001, 21(3): 289–325
|
5 |
Nevo S. On theorems of Yang and Schwick. Complex Var Elliptic Equ, 2001, 46(4): 315–321
|
6 |
Pang X C. On normal criterion of meromorphic functions. Sci China Ser A, 1990, 33(5): 521–527
|
7 |
Pang X C, Nevo S, Zalcman L. Derivatives of meromorphic functions with multiple zeros and rational functions. Comput Methods Funct Theory, 2008, 8(2): 483–491
|
8 |
Pang X C, Zalcman L. Normal families and shared values. Bull Lond Math Soc, 2000, 32(3): 325–331
|
9 |
Schiff J L. Normal Families. New York: Springer-Verlag, 1993
|
10 |
Wang Y F, Fang M L. Picard values and normal families of meromorphic functions with multiple zeros. Acta Math Sin (Engl Ser), 1998, 14(1): 17–26
|
11 |
Yang P. Quasinormal criterion and Picard type theorem. Acta Math Sci Ser A Chin Ed, 2015, 35(6): 1089–1105 (in Chinese)
|
12 |
Yang P, Nevo S. Derivatives of meromorphic functions with multiple zeros and elliptic functions. Acta Math Sin (Engl Ser), 2013, 29(7): 1257–1278
|
13 |
Yang P, Niu P Y. Derivatives of meromorphic functions with multiple zeros and small functions. Abstr Appl Anal, 2014, 2014: 310251
|
14 |
Zalcman L. Normal families: new perspectives. Bull Amer Math Soc, 1998, 35(3): 215–230
|
/
〈 | 〉 |