RESEARCH ARTICLE

Derivatives of meromorphic functions and exponential functions

  • Pai YANG , 1,2 ,
  • Liangwen LIAO 2 ,
  • Qiaoyu CHEN 3
Expand
  • 1. College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China
  • 2. Department of Mathematics, Nanjing University, Nanjing 210093, China
  • 3. School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201620, China

Received date: 06 May 2015

Accepted date: 09 Feb 2018

Published date: 28 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

We take up a new method to prove a Picard type theorem. Let f be a meromorphic function in the complex plane, whose zeros are multiple, and let R be a Möbius transformation. If lim¯rT(r,f)r2=thenf'(z)=R(ez) has infinitely many solutions in the complex plane.

Cite this article

Pai YANG , Liangwen LIAO , Qiaoyu CHEN . Derivatives of meromorphic functions and exponential functions[J]. Frontiers of Mathematics in China, 2018 , 13(2) : 417 -433 . DOI: 10.1007/s11464-018-0691-2

1
Bergweiler W, Eremenko A. On the singularities of the inverse to a meromorphic function of finite order. Rev Mat Iberoam, 1995, 11: 355–373

DOI

2
Chuang C T. Normal Families of Meromorphic Functions. Singapore: World Scientific, 1993

DOI

3
Hayman W K. Picard values of meromorphic functions and their derivatives. Ann of Math, 1959, 70(1): 9–42

DOI

4
Nevo S. Applications of Zalcmans lemma to Qm-normal families. Analysis (Munich), 2001, 21(3): 289–325

5
Nevo S. On theorems of Yang and Schwick. Complex Var Elliptic Equ, 2001, 46(4): 315–321

DOI

6
Pang X C. On normal criterion of meromorphic functions. Sci China Ser A, 1990, 33(5): 521–527

7
Pang X C, Nevo S, Zalcman L. Derivatives of meromorphic functions with multiple zeros and rational functions. Comput Methods Funct Theory, 2008, 8(2): 483–491

DOI

8
Pang X C, Zalcman L. Normal families and shared values. Bull Lond Math Soc, 2000, 32(3): 325–331

DOI

9
Schiff J L. Normal Families. New York: Springer-Verlag, 1993

DOI

10
Wang Y F, Fang M L. Picard values and normal families of meromorphic functions with multiple zeros. Acta Math Sin (Engl Ser), 1998, 14(1): 17–26

DOI

11
Yang P. Quasinormal criterion and Picard type theorem. Acta Math Sci Ser A Chin Ed, 2015, 35(6): 1089–1105 (in Chinese)

12
Yang P, Nevo S. Derivatives of meromorphic functions with multiple zeros and elliptic functions. Acta Math Sin (Engl Ser), 2013, 29(7): 1257–1278

DOI

13
Yang P, Niu P Y. Derivatives of meromorphic functions with multiple zeros and small functions. Abstr Appl Anal, 2014, 2014: 310251

14
Zalcman L. Normal families: new perspectives. Bull Amer Math Soc, 1998, 35(3): 215–230

DOI

Outlines

/