RESEARCH ARTICLE

Castelnuovo-Mumford regularity and projective dimension of a squarefree monomial ideal

  • Lizhong CHU ,
  • Shisen LIU ,
  • Zhongming TANG
Expand
  • Department of Mathematics, Soochow University, Suzhou 215006, China

Received date: 20 Sep 2014

Accepted date: 20 Dec 2017

Published date: 28 Mar 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Let S = K[x1, x2, . . . , xn] be the polynomial ring in n variables over a field K, and let I be a squarefree monomial ideal minimally generated by the monomials u1, u2, . . . , um. Let w be the smallest number t with the property that for all integers 1i1<i2<<itm such that lcm (ui1,ui2, . . . , uit) =lcm(u1, u2, . . . , um). We give an upper bound for Castelnuovo-Mumford regularity of I by the bigsize of I. As a corollary, the projective dimension of I is bounded by the number w.

Cite this article

Lizhong CHU , Shisen LIU , Zhongming TANG . Castelnuovo-Mumford regularity and projective dimension of a squarefree monomial ideal[J]. Frontiers of Mathematics in China, 2018 , 13(2) : 277 -286 . DOI: 10.1007/s11464-017-0680-x

1
Bayer D, Mumford D. What can be computed in algebraic geometry? In: Eisenbud D, Robbiano L, eds. Computational Algebraic Geometry and Commutative Algebra. Proceedings of a Conference held at Cortona, Italy, 1991. Cambridge: Cambridge Univ Press, 1993, 1–48

2
Bayer D, Stillman M. A criterion for detecting m-regularity. Invent Math, 1987, 87: 1–11

DOI

3
Chardin M. Some results and questions on Castelnuovo-Mumford regularity. In: Peeva I, ed. Syzygies and Hilbert Functions. Lect Notes Pure Appl Math, Vol 254. Boca Raton: CRC Press, 2007, 1–40

4
Chardin M, Minh N C, Trung N V. On the regularity of products and intersections of complete intersections. Proc Amer Math Soc, 2007, 135(6): 1597–1606

DOI

5
Eisenbud D. Commutative Algebra with a View Toward Algebraic Geometry.New York: Springer-Verlag, 1995

6
Eisenbud D, Goto S. Linear free resolutions and minimal multiplicities. J Algebra, 1984, 88: 89–133

DOI

7
Frühbis-Krüger A, Terai N. Bounds for the regularity of monomial ideals. Le Matematiche, 1998, LIII-Suppl: 83–97

8
Herzog J. A generalization of the Taylor complex construction. Comm Algebra, 2007, 35: 1747–1756

DOI

9
Herzog J, Hibi T. Monomial Ideals.Berlin: Springer, 2010

10
Herzog J, Popescu D, Vladoiu M. Stanley depth and size of a monomial ideal. Proc Amer Math Soc, 2012, 140: 493–504

DOI

11
Hoa L T, Trung N V. On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals. Math Z, 1998, 229: 519–537

DOI

12
Lyubeznik G. On the arithmetical rank of monomial ideals. J Algebra, 1988, 112: 86–89

DOI

13
Peeva I, Stillman M. Open problems on syzygies and Hilbert Functions. J Commut Algebra, 2009, 1(1): 159–195

DOI

14
Popescu D. Stanley conjecture on intersections of four monomial prime ideals. Comm Algebra, 2003, 41: 4351–4362

DOI

15
Stückrad J, Vogel W. Buchsbaum Rings and Applications.Berlin: Springer, 1986

DOI

16
Sturmfels B, Trung N V, Vogel W. Bound on degrees of projective schemes. Math Ann, 1995, 302: 417–432

DOI

17
Terai N, Hibi T. Alexander duality theorem and second Betti numbers of Stanley-Reisner rings. Adv Math, 1996, 124: 332–333

DOI

Outlines

/