RESEARCH ARTICLE

Valuation of correlation options under a stochastic interest rate model with regime switching

  • Kun FAN ,
  • Rongming WANG
Expand
  • School of Statistics, East China Normal University, Shanghai 200241, China

Received date: 18 Aug 2016

Accepted date: 08 Oct 2016

Published date: 30 Sep 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

We consider the valuation of a correlation option, a two-factor analog of a European call option, under a Hull-White interest rate model with regime switching. More specifically, the model parameters are modulated by an observable, continuous-time, finite-state Markov chain. We obtain an integral pricing formula for the correlation option by adopting the techniques of measure changes and inverse Fourier transform. Numerical analysis, via the fast Fourier transform, is provided to illustrate the practical implementation of our model.

Cite this article

Kun FAN , Rongming WANG . Valuation of correlation options under a stochastic interest rate model with regime switching[J]. Frontiers of Mathematics in China, 2017 , 12(5) : 1113 -1130 . DOI: 10.1007/s11464-017-0608-5

1
BakshiG, MadanD. Spanning and derivative-security valuation.J Financial Economics, 2000, 55: 205–238

DOI

2
CarrP, MadanD. Option valuation using the fast Fourier transform.J Comput Finance, 1999, 2: 61–73

DOI

3
CoxJ, IngersollJ, RossS. A theory of the term structure of interest rates.Econometrica, 1985, 53: 385–407

DOI

4
DempsterM A H, HongS S G.Spread option valuation and the fast Fourier transform.In: Mathematical Finance-Bachelier Congress 2000. Berlin: Springer, 2002, 203–220

DOI

5
ElliottR J, AggounL, MooreJ B. Hidden Markov Models: Estimation and Control.Berlin-Heidelberg-New York: Springer, 1994

6
ElliottR J, MamonR S. An interest rate model with a Markovian mean-reverting level.Quant Finance, 2002, 2(6): 454–458

DOI

7
ElliottR J, SiuT K. On Markov-modulated exponential-affine bond price formulae.Appl Math Finance, 2009, 16(1): 1–15

DOI

8
ElliottR J, SiuT K, BadescuA. Bond valuation under a discrete-time regime-switching term-structure model and its continuous-time extension.Managerial Finance, 2011, 37(11): 1025–1047

DOI

9
ElliottR J, WilsonC A. The term structure of interest rates in a hidden Markov setting.In: Mamon R S, Elliott R J, eds. Hidden Markov Models in Finance. New York: Springer, 2007, 15–30

DOI

10
FanK, ShenY, SiuT K, WangR. An FFT approach for option pricing under a regimeswitching stochastic interest rate model.Comm Statist Theory Methods, 2017, 46(11): 5292–5310

DOI

11
HamiltonJ D. A new approach to the economic analysis of nonstationary time series and the business cycle.Econometrica, 1989, 57: 357–384

DOI

12
HullJ, WhiteA. Pricing interest-rate derivative securities.Rev Financial Studies, 1990, 3(4): 573–592

DOI

13
KwokY K, LeungK S, WongH Y. Efficient option pricing using the fast Fourier transform.In: Duan J C, Härdle W K, Gentle J E, eds. Handbook of Computational Finance. Berlin: Springer-Verlag, 2012, 579–604

DOI

14
LiuR H, ZhangQ, YinG. Option pricing in a regime-switching model using the fast Fourier transform.Int J Stoch Anal, 2006, Article ID: 18109

DOI

15
PalmowskiZ, RolskiT. A technique for exponential change of measure for Markov processes.Bernoulli, 2002, 8: 767–785

16
RolskiT, SchmidliH, SchmidliV, TeugelsJ L. Stochastic Processes for Insurance and Finance.New York: Wiley, 1999

DOI

17
ShenY, SiuT K. Pricing bond options under a Markovian regime-switching Hull-White model.Economic Modelling, 2013, 30: 933–940

DOI

18
ShenY, SiuT K. Pricing variance swaps under a stochastic interest rate and volatility model with regime-switching.Oper Res Lett, 2013, 41: 180–187

DOI

19
SiuT K. Bond pricing under a Markovian regime-switching jump-augmented Vasicek model via stochastic flows.Appl Math Comput, 2010, 216: 3184–3190

DOI

20
VasicekO. An equilibrium characterization of the term structure.J Financial Economics, 1977, 5: 177–188

DOI

21
ZhangS, WangL. A fast Fourier transform technique for pricing European options with stochastic volaility and jump risk.Math Probl Eng, 2012, Article ID: 761637

Outlines

/