RESEARCH ARTICLE

An equivalent characterization of BMO with Gauss measure

  • Zhehui WANG ,
  • Dongyong YANG
Expand
  • School of Mathematical Sciences, Xiamen University, Xiamen 361005, China

Received date: 07 May 2016

Accepted date: 16 Dec 2016

Published date: 20 Apr 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let γbe the Gauss measure on ℝn.We establish a Calderón-Zygmund type decomposition and a John-Nirenberg type inequality in terms of the local sharp maximal function and the median value of function over cubes. As an application, we obtain an equivalent characterization of known BMO space with Gauss measure.

Cite this article

Zhehui WANG , Dongyong YANG . An equivalent characterization of BMO with Gauss measure[J]. Frontiers of Mathematics in China, 2017 , 12(3) : 749 -768 . DOI: 10.1007/s11464-017-0624-5

1
BuiT A, DuongX T. Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. J Geom Anal, 2011, 23: 895–932

DOI

2
CoifmanR R, WeissG. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes. Étude de certaines intégrales singulières. Lecture Notes in Math, Vol 242. Berlin-New York: Springer-Verlag, 1971

DOI

3
DuongX T, LiJ, MaoS, WuH, YangD. Compactness of Riesz transform commutator associated with Bessel operators. J Anal Math (to appear)

4
FabesE B, GutíerrezC, ScottoR. Weak type estimates for the Riesz transforms associated with the Gaussian measure. Rev Mat Iberoam, 1994, 10: 229–281

DOI

5
García-CuervaJ, MauceriG, MedaS, SjögrenP, TorreaJ L. Functional calculus for the Ornstein-Uhlenbeck operator. J Funct Anal, 2001, 183: 413–450

DOI

6
García-CuervaJ, MauceriG, MedaS, SjögrenP, TorreaJ L. Maximal operators for the holomorphic Ornstein-Uhlenbeck semigroup. J Lond Math Soc (2), 2003, 67: 219–234

7
GundyR F. Sur les transformations de Riesz pour le semi-groupe dÓrnstein-Uhlenbeck. C R Acad Sci Paris Sér I Math, 1986, 303: 967–970

8
GutíerrezC E. On the Riesz transforms for Gaussian measures. J Funct Anal, 1994, 120: 107–134

DOI

9
HebischW, MauceriG, MedaS. Holomorphy of spectral multipliers of the Ornstein-Uhlenbeck operator. J Funct Anal, 2004, 210: 101–124

DOI

10
HuG, MengY, YangD. A new characterization of regularized BMO spaces on nonhomogeneous spaces and its applications. Ann Acad Sci Fenn Math, 2013, 38: 3–27

DOI

11
HuG, YangDa, YangDo. A new characterization of RBMO(μ) by John-Strömberg sharp maximal functions. Czechoslovak Math J, 2009, 59(134): 159–171

DOI

12
HytönenT. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ Mat, 2010, 54: 485–504

DOI

13
HytönenT, MartikainenH. Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. J Geom Anal, 2012, 22: 1071–1107

DOI

14
HytönenT, YangDa, YangDo. The Hardy space H1 on non-homogeneous metric spaces. Math Proc Cambridge Philos Soc, 2012, 153: 9–31

DOI

15
JawerthB, TorchinskyA. Local sharp maximal functions. J Approx Theory, 1985, 43: 231–270

DOI

16
JohnF, NirenbergL. On functions of bounded mean oscillation. Comm Pure Appl Math, 1961, 14: 415–426

DOI

17
JournéJ-L. Caldeón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Math, Vol 994. Berlin: Springer-Verlag, 1983

DOI

18
LiuL, SawanoY, YangD. Morrey-type spaces on Gauss measure spaces and boundedness of singular integrals. J Geom Anal, 2014, 24: 1007–1051

DOI

19
LiuL, YangD. BLO spaces associated with the Ornstein-Uhlenbeck operator. Bull Sci Math, 2008, 132: 633–649

DOI

20
LiuL, YangD. Boundedness of Littlewood-Paley operators associated with Gauss measures. J Inequal Appl, 2010, 2010(1): 1–41

DOI

21
LiuL, YangD. Characterizations of BMO associated with Gauss measures via commutators of local fractional integrals. Israel J Math, 2010, 180: 285–315

DOI

22
LiuL, YangD. Pointwise multipliers for Campanato spaces on Gauss measure spaces. Nagoya Math J, 2014, 214: 169–193

DOI

23
MauceriG, MedaS. BMO and H1 for the Ornstein-Uhlenbeck operator. J Funct Anal, 2007, 252: 278–313

DOI

24
MauceriG, MedaS, SjögrenP. Sharp estimates for the Ornstein-Uhlenbeck operator. Ann Sc Norm Super Pisa Cl Sci (5), 2004, 3: 447–480

25
ShiX, TorchinskyA. Local sharp maximal functions in spaces of homogeneous type. Sci Sinica Ser A, 1987, 30: 473–480

26
SjögrenP. On the maximal function for the Mehler kernel. In: Harmonic Analysis (Cortona, 1982). Lecture Notes in Math, Vol 992. Berlin: Springer, 1983, 73–82

27
StrömbergJ O. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511–544

DOI

28
TolsaX. BMO, H1 and Calderón-Zygmund operators for non doubling measures. Math Ann, 2001, 319: 89–149

DOI

Outlines

/