RESEARCH ARTICLE

How many consumer levels can survive in a chemotactic food chain?

  • Jing LIU 1 ,
  • Chunhua OU , 2
Expand
  • 1. Department of Mathematics, Dalian Maritime University, Dalian 116024, China
  • 2. Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, A1C 5S7, Canada

Received date: 20 Oct 2008

Accepted date: 07 Nov 2008

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We investigate the effect and the impact of predator-prey interactions, diffusivity and chemotaxis on the ability of survival of multiple consumer levels in a predator-prey microbial food chain. We aim at answering the question of how many consumer levels can survive from a dynamical system point of view. To solve this standing issue on food-chain length, first we construct a chemotactic food chain model. A priori bounds of the steady state populations are obtained. Then under certain sufficient conditions combining the effect of conversion efficiency, diffusivity and chemotaxis parameters, we derive the co-survival of all consumer levels, thus obtaining the food chain length of our model. Numerical simulations not only confirm our theoretical results, but also demonstrate the impact of conversion efficiency, diffusivity and chemotaxis behavior on the survival and stability of various consumer levels.

Cite this article

Jing LIU , Chunhua OU . How many consumer levels can survive in a chemotactic food chain?[J]. Frontiers of Mathematics in China, 2009 , 4(3) : 495 -521 . DOI: 10.1007/s11464-009-0031-7

1
Amann H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Review, 1976, 18: 620-709

DOI

2
Bally M, Dung L, Jones D A, Smith H L. Effects of random motility on microbial growth and competition in a flow reactor. SIAM J Appl Math, 1998, 59: 573-596

DOI

3
Boer M P, Kooi B W, Kooijman S. Multiple attractors and boundary crises in a tri-trophic food chain. Math Biosci, 2001, 169: 109-128

DOI

4
Butler G J, Hsu S B, Waltman P. A mathematical model of the chemostat with periodic washout rate. SIAM J Appl Math, 1985, 45(3): 435-449

DOI

5
Cantrell R S, Cosner C. Models for predator-prey systems at multiple scales. SIAM Rev, 1996, 38(2): 256-286

DOI

6
Chiu C, Hsu S. Extinction of top-predator in a three-level food-chain model. J Math Biol, 1998, 37(4): 372-380

DOI

7
Du Y, Shi J. Allee effect and bistability in a spatially heterogeneous predator-prey model. Trans Amer Math Soc, 2007, 359(9): 4557-4593

DOI

8
Dunbar S R. Travelling wave solutions of diffusive Lotka-Volterra equations. J Math Biol, 1983, 17(1): 11-32

DOI

9
Dung L. Global attractors and steady state solutions for a class of reaction-diffusion systems. J Differential Equations, 1998, 147: 1-29

DOI

10
Dung L. Coexistence with chemotaxis. SIAM J Math Anal, 2000, 32: 504-521

DOI

11
Dung L, Smith H L. A parabolic system modeling microbial competition in an unmixed bio-reactor. J Differential Equations, 1996, 130(1): 59-91

DOI

12
Dung L, Smith H L. Steady states of models of microbial growth and competition with chemotaxis. J Math Anal Appl, 1999, 229: 295-318

DOI

13
Freedman H I, Ruan S. Hopf bifurcation in three-species food chain models with group defense. Math Biosci, 1992, 111(1): 73-87

DOI

14
Fretwell S D. Food chain dynamics: the central theory of ecology? OIKOS, 1987, 50: 291-301

DOI

15
Gourley S A, Kuang Y. Two-species competition with high dispersal: the winning strategy. Math Biosci Eng, 2005, 2(2): 345-362

16
Herrero M, Velazquez J. Chemotactic collapse for the Keller-Segel model. J Math Biol, 1996, 35: 177-194

DOI

17
Hofer T, Sherratt J, Maini P K. Cellular pattern formation during Dictyostelium aggregation. Physica D, 1995, 85: 425-444

DOI

18
Hsu S B, Waltman P. Analysis of a model of two competitors in a chemostat with an external inhibitor. SIAM J Appl Math, 1992, 52(2): 528-540

DOI

19
Hsu S B, Waltman P. On a system of reaction-diffusion equations arising from competition in an unstirred chemostat. SIAM J Appl Math, 1993, 53(4): 1026-1044

DOI

20
Huang J, Lu G, Ruan S. Existence of traveling wave solutions in a diffusive predatorprey model. J Math Biol, 2003, 46(2): 132-152

DOI

21
Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Math Biol, 1970, 26: 399-415

22
Lauffenburger D, Calcagno P. Competition between two microbial populations in a non-mixed environment: effect of cell random motility. Biotech Bioengrg, 1983, 25: 2103-2125

DOI

23
Lemesle V, Gouze J L. A simple unforced oscillatory growth model in the chemostat. Bull Math Biol, 2008, 70(2): 344-357

DOI

24
Li B T, Kuang Y. Simple food chain in a Chemostat with distinct removal rates. J Math Anal Appl, 2000, 242: 75-92

DOI

25
Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotaxis system. J Differential Equations, 1988, 72: 1-27

DOI

26
Liu J, Zheng S N. A Reaction-diffusion system arising from food chain in an unstirred Chemostat. J Biomath, 2002, 3: 263-272

27
Martiel J L, Goldbeter A. A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys J, 1987, 52: 807-828

DOI

28
Monk P B, Othmer H G. Cyclic AMP oscillations in suspensions of Dictyostelium discoideum. Proc Roy Soc Lond B, 1989, 240: 555-589

29
Muratori S, Rinaldi S. Low- and high-frequency oscillations in three-dimensional food chain systems. SIAM J Appl Math, 1992, 52(6): 1688-1706

DOI

30
Murray J D. Mathematical Biology, I and II. New York: Springer-Verlag, 2002

31
Odum E P. Trophic structure and productivity of Silver Springs. Florida, -Ecol Monogr, 1957, 27: 55-112

DOI

32
Ou C, Wu J. Spatial spread of rabies revisited: influence of age-dependent diffusion on nonlinear dynamics. SIAM J Appl Math, 2006, 67(1): 138-163

DOI

33
Ou C, Wu J. Persistence of wavefronts in delayed nonlocal reaction-diffusion equations. J Differential Equations, 2007, 235(1): 219-261

DOI

34
Ou C, Wu J. Traveling wavefronts in a delayed food-limited population model. SIAM J Math Anal, 2007, 39(1): 103-125

DOI

35
Owen M R, Lewis M A. How predation can slow, stop or reverse a prey invasion. Bull Math Bio, 2001, 63: 655-684

DOI

36
Painter K J, Hillen T. Volume-filling and quorum-fensing in models for chemosensitive and movement. Canadian Applied Mathematics Quarterly, 2002, 10: 501-542

37
Pang P Y H,Wang M X. Strategy and stationary pattern in a three-species predatorprey model. Journal of Differential Equations, 2004, 200(2): 245-273

DOI

38
Peng R, Shi J, Wang M. Stationary pattern of a ratio-dependent food chain model with diffusion. SIAM J Appl Math, 2007, 67(5): 1479-1503

DOI

39
Peng R, Wang M X. On multiplicity and stability of positive solutions of a diffusive prey-predator model. Journal of Mathematical Analysis and Applications, 2006, 316(1): 256-268

DOI

40
Pimm S L, Kitching R L. The determinants of food chain lengths. OIKOS, 1987, 50: 302-307

DOI

41
Post D M. The long and short of food chain length. Trends in Ecology and Evolution, 2002, 17: 269-277

DOI

42
Potapov A B, Hillen T. Metastability in chemotaxis models. J Dynam Differential Equations, 2005, 17(2): 293-330

DOI

43
Ruan S, He X. Global stability in chemostat-type competition models with nutrient recycling. SIAM J Appl Math, 1998, 58(1): 170-192

DOI

44
Smith H L. Competitive coexistence in an oscillating chemostat. SIAM J Appl Math, 1981, 40(3): 498-522

DOI

45
Wang X. Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J Math Anal, 2000, 31(3): 535-560

DOI

46
Wang Y F, Yin J X. Predator-prey in an unstirred chemostat with periodical input and washout. Nonlinear Analysis: Real World Applications, 2002, 3: 597-610

DOI

47
Wu J, Nie H, Wolkowicz G S K. A mathematical model of competition for two essential resources in the unstirred chemostat. SIAM J Appl Math, 2004, 65(1): 209-229

DOI

48
Wu J, Nie H, Wolkowicz G S K. The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat. SIAM J Math Anal, 2007, 38(6): 1860-1885

DOI

49
Wu J, Wolkowicz G S K. A system of resource-based growth models with two resources in the unstirred chemostat. J Differential Equations, 2001, 172(2): 300-332

DOI

Options
Outlines

/