Frontiers of Mathematics in China >
Rapid fluctuation for topological dynamical systems
Received date: 26 Aug 2008
Accepted date: 20 Oct 2008
Published date: 05 Sep 2009
Copyright
In this paper, we introduce a new notion called rapid fluctuation to characterize the complexity of a general topological dynamical system. As a continuation of the former work [Huang, Chen, Ma, J. Math. Anal. Appl., 2006, 323: 228-252], here we prove that a Lipschitz dynamical system defined on a compact metric space has a rapid fluctuation if it has either a quasi shift invariant set or a topological horseshoe. As an application, the rapid fluctuation of a discrete predator-prey model is considered.
Yu HUANG , Yi ZHOU . Rapid fluctuation for topological dynamical systems[J]. Frontiers of Mathematics in China, 2009 , 4(3) : 483 -494 . DOI: 10.1007/s11464-009-0030-8
1 |
Block L. Homoclinic points of mappings of the interval. Proc Amer Math Soc, 1978, 72: 576-580
|
2 |
Chen G, Hsu S B, Huang T. Analyzing displacement term’s memory effect in a van der Pol type boundary condition to prove chaotic vibration of the wave equation. Int J Bifur & Chaos, 2002, 12: 965-981
|
3 |
Chen G, Huang T, Huang Y. Chaotic behavior of interval maps and total variations of iterates. Int J Bifur & Chaos, 2004, 14: 2161-2186
|
4 |
Chen G, Huang T, Juang J, Ma D. Unbounded growth of total variations of snapshots of the 1D linear wave equation due to the chaotic behavior of iterates of composite nonlinear boundary reflection relations. In: Chen G, Lasiecka I, Zhou J, eds. Control of Nonlinear Distributed Parameter Systems. Lectures Notes on Pure & Appl Math. New York: Marcel Dekker, 2001, 15-43
|
5 |
Falconer K. Fractal Geometry. New York: John Wiley and Sons, 1990
|
6 |
Huang Y. Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection. Int J Bifur & Chaos, 2003, 13: 1183-1195
|
7 |
Huang Y. A new characterization of nonisotropic chaotic vibrations of the onedimensional linear wave equation with a Van der Pol boundary condition. J Math Anal Appl, 2003, 288(1): 78-96
|
8 |
Huang Y. Boundary feedback anticontrol of spatiotemporal chaos for 1D hyperbolic dynamical systems. Int J Bifur & Chaos, 2004, 14: 1705-1723
|
9 |
Huang Y, Chen G, Ma D W. Rapid fluctuations of chaotic maps on
|
10 |
Huang Y, Feng Z. Infinite-dimensional dynamical systems induced by interval maps. Dyn Contin Discrete Impuls Syst, Ser A, Math Anal, 2006, 13(3-4): 509-524
|
11 |
Huang Y, Jiang X M, Zou X. Dynamics in numerics II: on a discrete predator-prey model. Diff Eqns Dyan Syst (in press)
|
12 |
Huang Y, Luo J, Zhou Z L. Rapid fluctuations of snapshots of one-dimensional linear wave equation with a Van der Pol nonlinear boundary condition. Int J Bifur & Chaos, 2005, 15: 567-580
|
13 |
Kennedy J, Yorke J A. Topological horseshoe. Trans Amer Math Soc, 2001, 353: 2513-2530
|
14 |
Marotto F R. Snap-back repellers imply chaos in
|
15 |
Marotto F R. On redefining a snap-back repeller. Chaos Solitons, and Fractals, 2005, 25: 25-28
|
16 |
Zhang Z S. Shift-invariant sets of endomorphisms. Acta Math Sinica, 1984, 27(4): 564-576 (in Chinese)
|
17 |
Zhou Z L. Symbolic Dynamics. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1997 (in Chinese)
|
/
〈 | 〉 |