SURVEY ARTICLE

Four-manifolds with positive isotropic curvature

  • Bing-Long CHEN 1 ,
  • Xian-Tao HUANG , 2
Expand
  • 1. School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
  • 2. Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Received date: 20 Feb 2016

Accepted date: 10 Jun 2016

Published date: 23 Sep 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We give a survey on 4-dimensional manifolds with positive isotropic curvature. We will introduce the work of B. L. Chen, S. H. Tang and X. P. Zhu on a complete classification theorem on compact four-manifolds with positive isotropic curvature (PIC). Then we review an application of the classification theorem, which is from Chen and Zhu’s work. Finally, we discuss our recent result on the path-connectedness of the moduli spaces of Riemannian metrics with positive isotropic curvature.

Cite this article

Bing-Long CHEN , Xian-Tao HUANG . Four-manifolds with positive isotropic curvature[J]. Frontiers of Mathematics in China, 2016 , 11(5) : 1123 -1149 . DOI: 10.1007/s11464-016-0557-4

1
Brendle S, Schoen R. Manifolds with 1/4-pinched curvature are space forms. J Amer Math Soc, 2009, 22: 287–307

DOI

2
Brendle S, Schoen R. Sphere theorems in geometry. Surv Differ Geom, 2009, 13: 49–84

DOI

3
Carr R. Construction of manifolds of positive scalar curvature. Trans Amer Math Soc, 1988, 307: 63–74

DOI

4
Cerf J. Sur les difféomorphismes de la sph`ere de dimension trois (Γ4= 0).Lecture Notes in Math, Vol 53. Berlin: Springer-Verlag, 1968

DOI

5
Chang S-Y A, Gursky M J, Yang P. A conformally invariant sphere theorem in four dimensions. Publ Math Inst Hautes ´Etudes Sci, 2003, 98: 105–143

DOI

6
Chen B L, Huang X T. Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four-manifolds. Math Ann (to appear),

DOI

7
Chen B L, Tang S H, Zhu X P. Complete classification of compact four manifolds with positive isotropic curvature. J Differential Geom, 2012, 91: 41–80

8
Chen B L, Zhu X P. Ricci flow with surgery on four-manifolds with positive isotropic curvature. J Differential Geom, 2006, 74: 177–264

9
Chen B L, Zhu X P. A conformally invariant classification theorem in four dimensions. Comm Anal Geom, 2014, 22: 811–831

DOI

10
DeTurck D M. Deforming metrics in the direction of their Ricci tensors. J Differential Geom, 1983, 18: 157–162

11
Farrell F T, Ontaneda P. On the topology of the space of negatively curved metrics. J Differential Geom, 2010, 86: 273–301

12
Fraser A M. Fundamental groups of manifolds with positive isotropic curvature. Ann of Math, (2), 2003, 158: 345–354

13
Gromov M. Positive Curvature, Macroscopic Dimension, Spectral Gaps and Higher Signatures. Progr Math, Vol 132. Basel: Birkhäuser, 1996

14
Gromov M, Lawson H B Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ Math Inst Hautes Études Sci, 1983, 58: 83–196

DOI

15
Gursky M J, LeBrun C. Yamabe invariants and Spinc structures. Geom Funct Anal, 1998, 8: 965–977

DOI

16
Hamilton R. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982, 17: 255–306

17
Hamilton R. Four-manifolds with positive curvature operator. J Differential Geom, 1986, 24: 153–179

18
Hamilton R. Four-manifolds with positive isotropic curvature. Comm Anal Geom, 1997, 5: 1–92

DOI

19
Hamilton R. Three-orbifolds with positive Ricci curvature. In: Collected Papers on Ricci Flow. Ser Geom Topol, Vol 37. Somerville: Int Press, 2003, 521–524

20
Hitchin N. Harmonic spinors. Adv Math, 1974, 14: 1–55

DOI

21
Kapovitch V, Petrunin A, Tuschmann W. Non-negative pinching, moduli spaces and bundles with infinitely many souls. J Differential Geom, 2005, 71: 365–383

22
Kreck M, Stolz S. Nonconnected moduli spaces of positive sectional curvature metrics. J Amer Math Soc, 1993, 6: 825–850

DOI

23
Lohkamp J. The space of negative scalar curvature metrics. Invent Math, 1992, 110: 403–407

DOI

24
Marques F C. Deforming three-manifolds with positive scalar curvature. Ann of Math (2), 2012, 176: 815–863

25
McCullough D. Isometries of elliptic 3-manifolds. J Lond Math Soc (2), 2002, 65: 167–182

26
Micallef M J, Moore J D. Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann of Math (2), 1988, 127: 199–227

27
Micallef M J, Wang M. Metrics with nonnegative isotropic curvature. Duke Math J, 1993, 72: 649–672

DOI

28
Nguyen H T. Isotropic curvature and the Ricci flow. Int Math Res Not IMRN, 2010, 2010(3): 536–558

29
Rosenberg J. Manifolds of positive scalar curvature: a progress report. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 259–294

30
Rosenberg J, Stolz S. Metrics of positive scalar curvature and connections with surgery. In: Surveys on Surgery Theory: Papers Dedicated to C. T. C. Wall, Vol 2. Ann of Math Stud, Vol 149. Princeton: Princeton Univ Press, 2001, 353–386

DOI

31
Ruberman D. Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants. Geom Topol, 2001, 5: 895–924

DOI

32
Schoen R. Conformal deformation of a Riemannian metric to constant scalar curvature. J Differential Geom, 1984, 20: 479–495

33
Schoen R. Minimal submanifolds in higher codimension. Mat Contemp, 2006, 30: 169–199

34
Scott P. The geometries of 3-manifolds. Bull Lond Math Soc, 1983, 15: 401–487

DOI

35
Ue M. Geometric 4-manifolds in the sense of Thurston and Seifert 4-manifolds II. J Math Soc Japan, 1991, 43: 149–183

DOI

36
Weyl H. Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement. Vierteljahrsschr Naturforsch Ges Zür, 1916, 61: 40–72

Outlines

/