RESEARCH ARTICLE

New results on C11 and C12 lattices with applications to Grothendieck categories and torsion theories

  • Toma ALBU , 1 ,
  • Mihai IOSIF 2
Expand
  • 1. Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 5, P.O. Box 1-764, RO-010145 Bucharest 1, Romania
  • 2. Bucharest University, Department of Mathematics, Academiei Str. 14, RO-010014 Bucharest 1, Romania

Received date: 18 Oct 2015

Accepted date: 30 Nov 2015

Published date: 30 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, which is a cont inuation of our previous paper [T. Albu, M. Iosif, A. Tercan, The conditions (Ci) in modular lattices, and applications, J. Algebra Appl. 15 (2016), http: dx.doi.org/10.1142/S0219498816500018], we investigate the latticial counterparts of some results about modules satisfying the conditions (C11) or (C12). Applications are given to Grothendieck categories and module categories equipped with hereditary torsion theories.

Cite this article

Toma ALBU , Mihai IOSIF . New results on C11 and C12 lattices with applications to Grothendieck categories and torsion theories[J]. Frontiers of Mathematics in China, 2016 , 11(4) : 815 -828 . DOI: 10.1007/s11464-016-0550-y

1
Albu T. The Osofsky-Smith Theorem for modular lattices, and applications (II). Comm Algebra, 2014, 42: 2663–2683

DOI

2
Albu T. Topics in Lattice Theory with Applications to Rings, Modules, and Categories. Lecture Notes, XXIII Brazilian Algebra Meeting, Maringá, Paraná, Brasil, 2014 (80 pages)

3
Albu T. Chain Conditions in Modular Lattices with Applications to Grothendieck Categories and Torsion Theories. Monograph Series of Parana’s Mathematical Society No 1, Sociedade Paranaense de Matemática, Maringá, Paraná, Brasil, 2015 (134 pages)

4
Albu T, Iosif M. The category of linear modular lattices. Bull Math Soc Sci Math Roumanie, 2013, 56(104): 33–46

5
Albu T, Iosif M. Lattice preradicals with applications to Grothendieck categories and torsion theories. J Algebra, 2015, 444: 339–366

DOI

6
Albu T, Iosif M, Teply M L. Modular QFD lattices with applications to Grothendieck categories and torsion theories. J Algebra Appl, 2004, 3: 391–410

DOI

7
Albu T, Iosif M, Tercan A. The conditions (Ci) in modular lattices, and applications. J Algebra Appl, 2016, 15: (19 pages), http:dx.doi.org/10.1142/S0219498816500018

8
Albu T, Nǎstǎsescu C. Relative Finiteness in Module Theory. New York and Basel: Marcel Dekker, Inc, 1984

9
Crawley P, Dilworth R P. Algebraic Theory of Lattices. Englewood Cliffs: Prentice-Hall, 1973

10
Galvão M L, Smith P F. Chain conditions in modular lattices. Colloq Math, 1998, 76: 85–98

11
Grzeszczuk P, Puczi_lowski E R. On finiteness conditions of modular lattices. Comm Algebra, 1998, 26: 2949–2957

DOI

12
Mohamed S H, Müller B J. Continuous and Discrete Modules. Cambridge: Cambridge University Press, 1990

DOI

13
Nǎstǎsescu C, Van Oystaeyen F. Dimensions of Ring Theory. Dordrecht-Boston-Lancaster-Tokyo: D Reidel Publishing Company, 1987

DOI

14
Smith P F, Tercan A. Generalizations of CS-modules. Comm Algebra, 1993, 21: 1809–1847

DOI

15
Stenström B. Rings of Quotients. Berlin-Heidelberg-New York: Springer-Verlag, 1975

DOI

Outlines

/