Frontiers of Mathematics in China >
Representation theory of Dynkin quivers. Three contributions
Received date: 16 Jan 2016
Accepted date: 11 Apr 2016
Published date: 30 Aug 2016
Copyright
The representations of the Dynkin quivers and the corresponding Euclidean quivers are treated in many books. These notes provide three building blocks for dealing with representations of Dynkin (and Euclidean) quivers. They should be helpful as part of a direct approach to study represen-tations of quivers, and they shed some new light on properties of Dynkin and Euclidean quivers.
Key words: Quiver; Dynkin quiver; Euclidean quiver; the exceptional vertices of a Dynkin quiver; representations of quivers; thin representations; filtrations of vector spaces; conical representations of star quivers; Auslander-Reiten quiver; thick subcategories; perpendicular subcategories; one-point extension; antichains of a poset; antichains of an additive category; simplifi-cation; hammocks; the 2-4-8 property; the magic Freudenthal-Tits square
Claus Michael RINGEL . Representation theory of Dynkin quivers. Three contributions[J]. Frontiers of Mathematics in China, 2016 , 11(4) : 765 -814 . DOI: 10.1007/s11464-016-0548-5
1 |
Adams J F. Finite H-spaces and Lie groups. J Pure Appl Algebra, 1980, 19: 1–8
|
2 |
Auslander M. Representation theory of artin algebras II. Comm Algebra, 1974, 1(4): 269–310
|
3 |
Auslander M, Reiten I, SmaløS S. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge University Press, 1997
|
4 |
Bäckström K J. Orders with finitely many indecomposable lattices. Ph D Thesis, Göteborg, 1972
|
5 |
Bernstein I N, Gelfand I M, Ponomarev V A. Coxeter functors, and Gabriel's theorem. Russian Math Surveys, 1973, 28(2): 17–32
|
6 |
Brenner S. A combinatorial characterization of finite Auslander-Reiten quivers. In: Representation Theory I: Finite Dimensional Algebras. Lecture Notes in Math, Vol 1177. Berlin: Springer, 1986, 13–49
|
7 |
Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Mem Amer Math Soc, No 173. Providence: Amer Math Soc, 1976
|
8 |
Donovan P, Freislich M R. The Representation Theory of Finite Graphs and Associated Algebras. Carleton Math Lecture Notes, No 5. 1973
|
9 |
Freudenthal H. Lie groups in the foundations of geometry. Adv Math, 1964, 1: 145–190
|
10 |
Gabriel P. Unzerlegbare Darstellungen I. Manuscripta Math, 1972, 6: 71–103
|
11 |
Gabriel P. Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 72–103
|
12 |
Gelfand I M, Ponomarev V A. Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space. In: Coll Math Soc Janos Bolyai 5. Hilbert Space Operators. Tihany, Hungary, 1970, 163–237
|
13 |
Kleiner M M. On exact representations of partially ordered sets of finite type. Zap Naučn Sem LOMI, 1972, 28: 42–60
|
14 |
Krause H. Crawley-Boevey wird Humboldt-Professor in Bielefeld. Mitteilungen der DMV, 2016, 24(2): 80–84
|
15 |
Nazarova L A. Representations of quivers of infinite type. Izv Akad Nauk SSSR, Ser Mat, 1973, 37: 752–791
|
16 |
Ringel C M. Representations of K-species and bimodules. J Algebra, 1976, 41: 269–302
|
17 |
Ringel C M. Tame algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 137–287
|
18 |
Ringel C M. Bricks in hereditary length categories. Resultate der Math, 1983, 6: 64–70
|
19 |
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984
|
20 |
Ringel C M. Hall algebras and quantum groups. Invent Math, 1990, 101: 583–592
|
21 |
Ringel C M. The braid group operation on the set of exceptional sequences of a hereditary category. In: Gobel R, Hill P, Liebert W, eds. Abelian Group Theory and Related Topics. Contemp Math, No 171. Providence: Amer Math Soc, 1994, 339–352
|
22 |
Ringel C M. Distinguished bases of exceptional modules. In: Algebras, Quivers and Representations. Proceedings of the Abel Symposium 2011. Abel Symposia, Vol 8. Berlin: Springer, 2013, 253–274
|
23 |
Ringel C M. The Catalan combinatorics of the hereditary artin algebras. In: Recent Developments in Representation Theory. Contemp Math, Vol 673. Providence: Amer Math Soc, 2016 (to appear)
|
24 |
Ringel C M, Vossieck D. Hammocks. Proc Lond Math Soc (3), 1987, 54: 216–246
|
25 |
Tachikawa H. Quasi-Frobenius Rings and Generalizations. Lecture Notes in Math, Vol 351. Berlin: Springer, 1973
|
26 |
Tits J. Algebres alternatives, algebres de Jordan et algebres de Lie exceptionnelles, Indag Math, 1966, 28, 223–237
|
27 |
Vinberg E B. A construction of exceptional simple Lie groups. Tr Semin Vektorn Tensorn Anal, 1966, 13: 7–9 (in Russian)
|
28 |
Yoshii T. On algebras of bounded representation type. Osaka Math J, 1956, 8: 51–105
|
/
〈 | 〉 |