SURVEY ARTICLE

Representation theory of Dynkin quivers. Three contributions

  • Claus Michael RINGEL , 1,2
Expand
  • 1. Fakultät für Mathematik, Universität Bielefeld, P. O. Box 100 131, D-33501 Bielefeld, Germany
  • 2. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 16 Jan 2016

Accepted date: 11 Apr 2016

Published date: 30 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The representations of the Dynkin quivers and the corresponding Euclidean quivers are treated in many books. These notes provide three building blocks for dealing with representations of Dynkin (and Euclidean) quivers. They should be helpful as part of a direct approach to study represen-tations of quivers, and they shed some new light on properties of Dynkin and Euclidean quivers.

Cite this article

Claus Michael RINGEL . Representation theory of Dynkin quivers. Three contributions[J]. Frontiers of Mathematics in China, 2016 , 11(4) : 765 -814 . DOI: 10.1007/s11464-016-0548-5

1
Adams J F. Finite H-spaces and Lie groups. J Pure Appl Algebra, 1980, 19: 1–8

DOI

2
Auslander M. Representation theory of artin algebras II. Comm Algebra, 1974, 1(4): 269–310

DOI

3
Auslander M, Reiten I, SmaløS S. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge University Press, 1997

4
Bäckström K J. Orders with finitely many indecomposable lattices. Ph D Thesis, Göteborg, 1972

5
Bernstein I N, Gelfand I M, Ponomarev V A. Coxeter functors, and Gabriel's theorem. Russian Math Surveys, 1973, 28(2): 17–32

DOI

6
Brenner S. A combinatorial characterization of finite Auslander-Reiten quivers. In: Representation Theory I: Finite Dimensional Algebras. Lecture Notes in Math, Vol 1177. Berlin: Springer, 1986, 13–49

DOI

7
Dlab V, Ringel C M. Indecomposable Representations of Graphs and Algebras. Mem Amer Math Soc, No 173. Providence: Amer Math Soc, 1976

8
Donovan P, Freislich M R. The Representation Theory of Finite Graphs and Associated Algebras. Carleton Math Lecture Notes, No 5. 1973

9
Freudenthal H. Lie groups in the foundations of geometry. Adv Math, 1964, 1: 145–190

DOI

10
Gabriel P. Unzerlegbare Darstellungen I. Manuscripta Math, 1972, 6: 71–103

DOI

11
Gabriel P. Auslander-Reiten sequences and representation-finite algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 72–103

DOI

12
Gelfand I M, Ponomarev V A. Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space. In: Coll Math Soc Janos Bolyai 5. Hilbert Space Operators. Tihany, Hungary, 1970, 163–237

13
Kleiner M M. On exact representations of partially ordered sets of finite type. Zap Naučn Sem LOMI, 1972, 28: 42–60

14
Krause H. Crawley-Boevey wird Humboldt-Professor in Bielefeld. Mitteilungen der DMV, 2016, 24(2): 80–84

DOI

15
Nazarova L A. Representations of quivers of infinite type. Izv Akad Nauk SSSR, Ser Mat, 1973, 37: 752–791

16
Ringel C M. Representations of K-species and bimodules. J Algebra, 1976, 41: 269–302

DOI

17
Ringel C M. Tame algebras. In: Representation Theory I. Lecture Notes in Math, Vol 831. Berlin: Springer, 1980, 137–287

DOI

18
Ringel C M. Bricks in hereditary length categories. Resultate der Math, 1983, 6: 64–70

DOI

19
Ringel C M. Tame Algebras and Integral Quadratic Forms. Lecture Notes in Math, Vol 1099. Berlin: Springer, 1984

DOI

20
Ringel C M. Hall algebras and quantum groups. Invent Math, 1990, 101: 583–592

DOI

21
Ringel C M. The braid group operation on the set of exceptional sequences of a hereditary category. In: Gobel R, Hill P, Liebert W, eds. Abelian Group Theory and Related Topics. Contemp Math, No 171. Providence: Amer Math Soc, 1994, 339–352

DOI

22
Ringel C M. Distinguished bases of exceptional modules. In: Algebras, Quivers and Representations. Proceedings of the Abel Symposium 2011. Abel Symposia, Vol 8. Berlin: Springer, 2013, 253–274

DOI

23
Ringel C M. The Catalan combinatorics of the hereditary artin algebras. In: Recent Developments in Representation Theory. Contemp Math, Vol 673. Providence: Amer Math Soc, 2016 (to appear)

24
Ringel C M, Vossieck D. Hammocks. Proc Lond Math Soc (3), 1987, 54: 216–246

25
Tachikawa H. Quasi-Frobenius Rings and Generalizations. Lecture Notes in Math, Vol 351. Berlin: Springer, 1973

26
Tits J. Algebres alternatives, algebres de Jordan et algebres de Lie exceptionnelles, Indag Math, 1966, 28, 223–237

DOI

27
Vinberg E B. A construction of exceptional simple Lie groups. Tr Semin Vektorn Tensorn Anal, 1966, 13: 7–9 (in Russian)

28
Yoshii T. On algebras of bounded representation type. Osaka Math J, 1956, 8: 51–105

DOI

Outlines

/