RESEARCH ARTICLE

Criteria for strong H-tensors

  • Yiju WANG , 1 ,
  • Kaili ZHANG 1 ,
  • Hongchun SUN 2
Expand
  • 1. School of Management Science, Qufu Normal University, Rizhao 276800, China
  • 2. School of Science, Linyi University, Linyi 276000, China

Received date: 16 Jun 2015

Accepted date: 02 Feb 2016

Published date: 17 May 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

H-tensor is a new developed concept which plays an important role in tensor analysis and computing. In this paper, we explore the properties of H-tensors and establish some new criteria for strong H-tensors. In particular, based on the principal subtensor, we provide a new necessary and sufficient condition of strong H-tensors, and based on a type of generalized diagonal product dominance, we establish some new criteria for identifying strong H-tensors. The results obtained in this paper extend the corresponding conclusions for strong H-matrices and improve the existing results for strong H-tensors.

Cite this article

Yiju WANG , Kaili ZHANG , Hongchun SUN . Criteria for strong H-tensors[J]. Frontiers of Mathematics in China, 2016 , 11(3) : 577 -592 . DOI: 10.1007/s11464-016-0525-z

1
Barmpoutis A, Vemuri B C, Howland D, Forder J R. Regularized positive-definite fourth order tensor field estimation from DW-MRI. Neuroimage, 2009, 45: 153–162

DOI

2
Barmpoutis A, Vemuri B C, Shepherd T M, Forder J R. Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. Transactions on Medical Imaging, 2007, 26: 1537–1546

DOI

3
Basser P J, Jones D K. Diffusion-tensor MRI: theory, experimental design and data analysis—a technical review. NMR Biomed, 2002, 15: 456–467

DOI

4
Basser P J, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 1994, 103: 247–254

DOI

5
Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric tensor decomposition. Linear Algebra Appl, 2010, 433: 1851–1872

DOI

6
Chang K, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520

DOI

7
Chen H, Qi L. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. J Ind Manag Optim, 2015, 11: 1263–1274

DOI

8
Cichocki A, Zdunek R, Huy P, Amari S. Nonnegative Matrix and Tensor Factorizations. New York: John Wiley & Sons, Ltd, 2009

DOI

9
De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2010, 21: 1253–1278

DOI

10
Ding W, Qi L, Wei Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl, 2013, 439: 3264–3278

DOI

11
Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems, 2011, 27: 025010

DOI

12
Horn R A, Johnson C R. Matrix Analysis. Cambridge: Cambridge University Press, 1985

DOI

13
Hu S, Huang Z, Qi L. Strictly nonnegative tensors and nonnegative tensor partition. Sci China Math, 2014, 57: 181–195

DOI

14
Kannan M R, Shaked-Monderer N, Berman A. Some properties of strong H-tensors and general H-tensors, Linear Algebra Appl, 2015, 476: 42–55

DOI

15
Kofidis E, Regalia P A. On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J Matrix Anal Appl, 2002, 23: 863–884

DOI

16
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51: 455–500

DOI

17
Li C, Wang F, Zhao J, Zhu Y, Li Y. Criterions for the positive definiteness of real supersymmetric tensors. J Comput Appl Math, 2014, 255: 1–14

DOI

18
Li Y, Liu Q, Qi L. Criteria for strong H-tensor. 2015, preprint

19
Nikias C L, Mendel J M. Signal processing with higher-order spectra. IEEE Signal Processing Magazine, 1993, 10: 10–37

DOI

20
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

DOI

21
Qi L, Yu G, Wu E X. Higher order positive semidefinite diffusion tensor imaging. SIAM J Imaging Sci, 2010, 3: 416–433

DOI

22
Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors and a Hierarchically elimination algorithm. SIAM J Matrix Anal Appl, 2014, 35: 1227–1241

DOI

23
Song Y, Qi L. Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl, 2014, 451: 1–14

DOI

24
Song Y, Qi L. Necessary and sufficient conditions for copositive tensors. Linear Multilinear Algebra, 2015, 63: 120–131

DOI

25
Wang Y, Zhou G, Caccetta L. Nonsingular H-tensor and its criteria. J Ind Manag Optim, 2016, 12(4): 1173–1186

DOI

26
Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517–2530

DOI

27
Zhang L, Qi L, Zhou G. M-tensors and some applications. SIAM J Matrix Anal Appl, 2014, 35: 437–452

DOI

Outlines

/