RESEARCH ARTICLE

Spectral gap for jump processes by decomposition method

  • Yonghua MAO ,
  • Lianghui XIA
Expand
  • School of Mathematical Sciences; Key Laboratory of Mathematics and Complex Systems, Ministry of Education, China, Beijing Normal University, Beijing 100875, China

Received date: 10 Oct 2008

Accepted date: 29 Dec 2008

Published date: 05 Jun 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

By using a decomposition method, we give a criterion for the spectral gap of the reversible general jump process. This criterion enables us to obtain the lower bound for the spectral gap via Lyapunov drift condition. Some examples are presented to illustrate the results.

Cite this article

Yonghua MAO , Lianghui XIA . Spectral gap for jump processes by decomposition method[J]. Frontiers of Mathematics in China, 2009 , 4(2) : 335 -347 . DOI: 10.1007/s11464-009-0015-7

1
Anderson W. Continuous-time Markov Chains. New York: Springer-Verlag, 1991

2
Cattlaux P, Guillin A, Wang F Y, Wu L. Lyapunov conditions for logarithmic Sobolev and super Poinca réinequality. arXiv: 0712.0235v1 [math.PR], 3 Dec, 2007

3
Chen M F. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains. Stoch Proc Appl, 2000, 87: 281-297

DOI

4
Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004

5
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. New York: Springer, 2005

6
Chen M F, Wang F Y. Cheeger’s inequalities for general symmetric forms and existence criteria for spectral gap. Ann Probab, 2000, 28: 235-257

DOI

7
Down D, Meyn S P, Tweedie R L. Exponential and Uniform Ergodicity of Markov Processes. Ann Probab, 1995, 23: 1671-1691

DOI

8
Jerrum M, Son J B, Tetall P, Vigoda E. Elementary bounds on Poincaré and Log-Sobolev constants for decomposable Markov chains. Ann Appl Probab, 2004, 14: 1741-1765

DOI

9
Martin R A, Randall D. Sampling adsorbing staircase walks using a new Markov chain decomposition method. In: Proceedings of the 41st IEEE Annual Symposium on Foundations of Computer Science. New York: Computer Society Press, 2000, 492-502

10
Meyn S, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993

11
Roberts G O, Tweedie R L. Geometric L2 and L1 convergence are equivalent for reversible Markov chains. J Appl Probab, 2001, 38A: 37-41

DOI

12
Wang F Y. Existence of the spectral gap for elliptic operators. Ark Math, 1999, 37: 395-407

DOI

13
Wang F Y. Functional Inequalities, Markov Processes, and Spectral Theory. Beijing: Scientific Press, 2004

Options
Outlines

/