Frontiers of Mathematics in China >
Spectral gap for jump processes by decomposition method
Received date: 10 Oct 2008
Accepted date: 29 Dec 2008
Published date: 05 Jun 2009
Copyright
By using a decomposition method, we give a criterion for the spectral gap of the reversible general jump process. This criterion enables us to obtain the lower bound for the spectral gap via Lyapunov drift condition. Some examples are presented to illustrate the results.
Key words: Jump process; Dirichlet form; decomposition method; spectral gap; Lyapunov condition
Yonghua MAO , Lianghui XIA . Spectral gap for jump processes by decomposition method[J]. Frontiers of Mathematics in China, 2009 , 4(2) : 335 -347 . DOI: 10.1007/s11464-009-0015-7
1 |
Anderson W. Continuous-time Markov Chains. New York: Springer-Verlag, 1991
|
2 |
Cattlaux P, Guillin A, Wang F Y, Wu L. Lyapunov conditions for logarithmic Sobolev and super Poinca réinequality. arXiv: 0712.0235v1 [math.PR], 3 Dec, 2007
|
3 |
Chen M F. Equivalence of exponential ergodicity and L2-exponential convergence for Markov chains. Stoch Proc Appl, 2000, 87: 281-297
|
4 |
Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004
|
5 |
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. New York: Springer, 2005
|
6 |
Chen M F, Wang F Y. Cheeger’s inequalities for general symmetric forms and existence criteria for spectral gap. Ann Probab, 2000, 28: 235-257
|
7 |
Down D, Meyn S P, Tweedie R L. Exponential and Uniform Ergodicity of Markov Processes. Ann Probab, 1995, 23: 1671-1691
|
8 |
Jerrum M, Son J B, Tetall P, Vigoda E. Elementary bounds on Poincaré and Log-Sobolev constants for decomposable Markov chains. Ann Appl Probab, 2004, 14: 1741-1765
|
9 |
Martin R A, Randall D. Sampling adsorbing staircase walks using a new Markov chain decomposition method. In: Proceedings of the 41st IEEE Annual Symposium on Foundations of Computer Science. New York: Computer Society Press, 2000, 492-502
|
10 |
Meyn S, Tweedie R L. Markov Chains and Stochastic Stability. London: Springer-Verlag, 1993
|
11 |
Roberts G O, Tweedie R L. Geometric L2 and L1 convergence are equivalent for reversible Markov chains. J Appl Probab, 2001, 38A: 37-41
|
12 |
Wang F Y. Existence of the spectral gap for elliptic operators. Ark Math, 1999, 37: 395-407
|
13 |
Wang F Y. Functional Inequalities, Markov Processes, and Spectral Theory. Beijing: Scientific Press, 2004
|
/
〈 | 〉 |