RESEARCH ARTICLE

Ergodicity of transition semigroups for stochastic fast diffusion equations

  • Wei LIU
Expand
  • Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany

Received date: 09 Dec 2009

Accepted date: 19 Feb 2011

Published date: 01 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, we first show the uniqueness of invariant measures for the stochastic fast diffusion equation, which follows from an obtained new decay estimate. Then we establish the Harnack inequality for the stochastic fast diffusion equation with nonlinear perturbation in the drift and derive the heat kernel estimate and ultrabounded property for the associated transition semigroup. Moreover, the exponential ergodicity and the existence of a spectral gap are also investigated.

Cite this article

Wei LIU . Ergodicity of transition semigroups for stochastic fast diffusion equations[J]. Frontiers of Mathematics in China, 2011 , 6(3) : 449 -472 . DOI: 10.1007/s11464-011-0112-2

1
Arnaudon M, Thalmaier A, Wang F Y. Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull Sci Math, 2006, 130: 223-233

DOI

2
Barbu V, Da Prato G. Invariant measures and the Kolmogorov equation for the stochastic fast diffusion equation. Stoc Proc Appl, 2010, 120: 1247-1266

DOI

3
Bendikov A, Maheux P. Nash type inequalities for fractional powers of nonnegative self-adjoint operators. Trans Amer Math Soc, 2007, 359: 3085-3097

DOI

4
Bogachev V I, Da Prato G, Röckner M. Invariant measures of generalized stochastic porous medium equations. Dokl Math, 2004, 69: 321-325

5
Bogachev V I, Röckner M, Zhang T S. Existence and uniqueness of invariant measures: an approach via sectorial forms. Appl Math Optim, 2000, 41: 87-109

DOI

6
Croke C B. Some isoperimetric inequalities and eigenvalue estimates. Ann Sci Éc Norm Super, 1980, 13: 419-435

7
Da Prato G, Röckner M, Rozovskii B L, Wang F Y. Strong solutions to stochastic generalized porous media equations: existence, uniqueness and ergodicity. Comm Part Diff Equ, 2006, 31: 277-291

DOI

8
Da Prato G, Röckner M, Wang F Y. Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J Funct Anal, 2009, 257: 992-1017

DOI

9
Da Prato G, Zabczyk J. Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, 229. Cambridge: Cambridge University Press, 1996

10
Daskalopoulos P, Kenig C E. Degenerate Diffusions: Initial Value Problems and Local Regularity Theory. EMS Tracts in Mathematics 1. Zürich: European Mathematical Society, 2007

DOI

11
Doob J L. Asymptotics properties of Markov transition probabilities. Trans Amer Math Soc, 1948, 63: 393-421

12
Driver B, Gordina M. Integrated Harnack inequalities on Lie groups. J Diff Geom, 2009, 83: 501-550

13
Gess B, Liu W, Röckner M. Random attractors for a class of stochastic partial differential equations driven by general additive noise. J Differential Equations, 2011,

DOI

14
Goldys B, Maslowski B. Exponential ergodicity for stochastic reaction-diffusion equations. In: Lecture Notes Pure Appl Math, Vol 245. Boca Raton: Chapman Hall/CRC Press, 2004, 115-131

15
Goldys B, Maslowski B. Lower estimates of transition densities and bounds on exponential ergodicity for stochastic PDE’s. Ann Probab, 2006, 34: 1451-1496

DOI

16
Gong F Z, Wang F Y. Heat kernel estimates with application to compactness of manifolds. Q J Math, 2001, 52(2): 171-180

DOI

17
Gyöngy I. On stochastic equations with respect to semimartingale III. Stochastics, 1982, 7: 231-254

DOI

18
Hairer M. Coupling stochastic PDEs. In: XIVth International Congress on Mathematical Physics, 2005, 281-289

19
Krylov N V, Rozovskii B L. Stochastic evolution equations. Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 1979, 14: 71-146

20
Liu W. Harnack inequality and applications for stochastic evolution equations with monotone drifts. J Evol Equ, 2009, 9: 747-770

DOI

21
Liu W. On the stochastic p-Laplace equation. J Math Anal Appl, 2009, 360: 737-751

DOI

22
Liu W. Large deviations for stochastic evolution equations with small multiplicative noise. Appl Math Optim, 2010, 61: 27-56

DOI

23
Liu W, Röckner M. SPDE in Hilbert space with locally monotone coefficients. J Funct Anal, 2010, 259: 2902-2922

DOI

24
Liu W, Tölle J M. Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts. Preprint

25
Liu W, Wang F Y. Harnack inequality and Strong Feller property for stochastic fast diffusion equations. J Math Anal Appl, 2008, 342: 651-662

DOI

26
Pardoux E. Equations aux dérivées partielles stochastiques non linéaires monotones. Thesis, Université Paris XI, 1975

27
Pardoux E. Stochastic partial differential equations and filtering of diffusion processes. Stochastics, 1979, 3: 127-167

DOI

28
Ren J, Röckner M, Wang F Y. Stochastic generalized porous media and fast diffusion equations. J Differential Equations, 2007, 238: 118-152

DOI

29
Röckner M, Wang F Y. Non-monotone stochastic porous media equation. J Differential Equations, 2008, 245: 3898-3935

DOI

30
Seidler J. Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math J, 1997, 47: 277-316

DOI

31
Vázquez J L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Oxford Lecture Notes in Mathematics and Its Applications, Vol 33. Oxford: Oxford University Press, 2006

DOI

32
Wang F Y. Functional inequalities, semigroup properties and spectrum estimates. Infin Dimens Anal Quant Probab Relat Top, 2000, 3: 263-295

33
Wang F Y. Dimension-free Harnack inequality and its applications. Front Math China, 2006, 1: 53-72

DOI

34
Wang F Y. Harnack inequality and applications for stochastic generalized porous media equations. Ann Probab, 2007, 35: 1333-1350

DOI

35
Wang F Y. Harnack Inequalities on Manifolds with Boundary and Applications. J Math Pures Appl, 2010, 94: 304-321

DOI

36
Zhang X. On stochastic evolution equations with non-Lipschitz coefficients. Stoch Dyn, 2009, 9: 549-595

DOI

Options
Outlines

/