RESEARCH ARTICLE

Quasineutral limit of bipolar quantum hydrodynamic model for semiconductors

  • Xiuhui YANG
Expand
  • Department of Mathematics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received date: 20 Dec 2009

Accepted date: 18 Dec 2010

Published date: 01 Apr 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This paper is concerned with the quasineutral limit of the bipolar quantum hydrodynamic model for semiconductors. It is rigorously proved that the strong solutions of the bipolar quantum hydrodynamic model converge to the strong solution of the so-called quantum hydrodynamic equations as the Debye length goes to zero. Moreover, we obtain the convergence of the strong solutions of bipolar quantum hydrodynamic model to the strong solution of the compressible Euler equations with damping if both the Debye length and the Planck constant go to zero simultaneously.

Cite this article

Xiuhui YANG . Quasineutral limit of bipolar quantum hydrodynamic model for semiconductors[J]. Frontiers of Mathematics in China, 2011 , 6(2) : 349 -362 . DOI: 10.1007/s11464-011-0102-4

1
Antonelli P, Marcati P. On the finite energy weak solutions to a system in quantum fluid dynamics. Comm Math Phys, 2009, 287: 657-686

DOI

2
Brenier Y. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2000, 25: 737-754

DOI

3
Gamba I M, Gualdani M P, Zhang P. On the blowing up of solutions to quantum hydrodynamic models on bounded domains. Monatsh Math, 2009, 157: 37-54

DOI

4
Gasser I, Marcati P. A quasi-neutral limit in a hydrodynamic model for charged fluids. Monatsh Math, 2003, 138: 189-208

DOI

5
Hsiao L, Li H L. The well-posedness and asymptotics of multi-dimensional quantum hydrodynamics. Acta Math Sci, Ser B, 2009, 29: 552-568

6
Hsiao L, Wang S. Quasineutral limit of a time-dependent drift-diffusion-Poisson model for pn junction semiconductor devices. J Differential Equations, 2006, 225: 411-439

DOI

7
Jia Y L, Li H L. Large-time behavior of solutions of quantum hydrodynamic model for semiconductors. Acta Math Sci, Ser B, 2006, 26: 163-178

8
Jüngel A. Quasi-hydrodynamic Semiconductor Equations. Progress in Nonlinear Differential Equations and Their Applications, Vol 41. Basel: Birkhäuser Verlag, 2001

9
Jüngel A, Li H L. Quantum Euler-Poisson systems: global existence and exponential decay. Quart Appl Math, 2004, 62: 569-600

10
Jüngel A, Li H L, Matsumura A. The relaxation-time limit in the quantum hydrodynamic equations for semiconductors. J Differential Equations, 2006, 225: 440-464

DOI

11
Jüngel A, Mariani M C, Rial D. Local existence of solutions to the transient quantum hydrodynamic equations. Math Models Methods Appl Sci, 2002, 12: 485-495

DOI

12
Jüngel A, Violet I. The quasineutral limit in the quantum drift-diffusion equations. Asympt Anal, 2007, 53: 139-157

13
Li F C. Quasineutral limit of the viscous quantum hydrodynamic model for semiconductors. J Math Anal Appl, 2009, 352: 620-628

DOI

14
Li H L, Marcati P. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Comm Math Phys, 2004, 245: 215-247

DOI

15
Li H L, Zhang G J, Zhang K J. Algebraic time decay for the bipolar quantum hydrodynamic model. Math Models Methods Appl Sci, 2008, 18: 859-881

DOI

16
Liang B, Zhang K J. Steady-state solutions and asymptotic limits on the multidimensional semiconductor quantum hydrodynamic model. Math Models Methods Appl Sci, 2007, 17: 253-275

DOI

17
Lin C K, Li H L. Zero Debye length asymptotic of the quantum hydrodynamic model for semiconductors. Comm Math Phys, 2005, 256: 195-212

DOI

18
Nishibata S, Suzuki M. Initial boundary value problems for a quantum hydrodynamic model of semiconductors: asymptotic behaviors and classical limits. J Differential Equations, 2008, 244: 836-874

DOI

19
Sideris C, Thomases B, Wang D. Long time behavior of solutions to the 3D compressible Euler equations with damping. Comm Partial Differential Equations, 2003, 28: 953-978

DOI

20
Unterreiter A. The thermal equilibrium solution of a generic bipolar quantum hydrodynamic model. Comm Math Phys, 1997, 188: 69-88

DOI

21
Ri J, Huang F M. Vacuum solution and quasineutral limit of semiconductor driftdiffusion equation. J Differential Equations, 2009, 246: 1523-1538

DOI

22
Wang S, Xin Z P, Markowich P A. Quasineutral limit of the drift diffusion models for semiconductors: The case of general sign-changing doping profile. SIAM J Math Anal, 2006, 37: 1854-1889

DOI

23
Zhang B, Jerome J W. On a steady-state quantum hydrodynamic model for semiconductors. Nonlinear Anal, 1996, 26: 845-856

DOI

24
Zhang G J, Li H L, Zhang K J. Semiclassical and relaxation limits of bipolar quantum hydrodynamic model for semiconductors. J Differential Equations, 2008, 245: 1433-1453

DOI

25
Zhang G J, Zhang K J. On the bipolar multidimensional quantum Euler-Poisson system: The thermal equilibrium solution and semiclassical limit. Nonlinear Anal, 2007, 66: 2218-2229

DOI

Options
Outlines

/