RESEARCH ARTICLE

Laws of iterated logarithm for transient random walks in random environments

  • Fuqing GAO
Expand
  • School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received date: 31 Jan 2015

Accepted date: 06 Apr 2015

Published date: 05 Jun 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider laws of iterated logarithm for one-dimensional transient random walks in random environments. A quenched law of iterated logarithm is presented for transient random walks in general ergodic random environments, including independent identically distributed environments and uniformly ergodic environments.

Cite this article

Fuqing GAO . Laws of iterated logarithm for transient random walks in random environments[J]. Frontiers of Mathematics in China, 2015 , 10(4) : 857 -874 . DOI: 10.1007/s11464-015-0481-z

1
Alili S. Asymptotic behaviour for random walks in random environments. J Appl Probab, 1999, 36: 334-349

DOI

2
Bolthausen E, Sznitman A. Ten Lectures on Random Media. DMV-Lectures, Vol 32. Basel: Birkhäuer, 2002

DOI

3
Comets F, Gantert N, Zeitouni O. Quenched, annealed and functional large deviations for one dimensional random walk in random environment. Probab Theory Related Fields, 2000, 118: 65-114

DOI

4
Dembo A, Zeitouni O. Large Deviation Techniques and Applications. 2nd ed. New York: Springer-Verlag, 1997

5
Goldhseid I. Simple transient random walks in one-dimensional random environment. Probab Theory Related Fields, 2007, 39: 41-64

DOI

6
Goldhseid I. Linear and sub-linear growth and the CLT for hitting times of a random walk in random environment on a strip. Probab Theory Related Fields, 2008, 141: 471-511

DOI

7
Greven A, den Hollander F. Large deviations for a random walk in random environment. Ann Probab, 1994, 22: 1381-1428

DOI

8
Hu Y, Shi Z. The limits of Sinai’s simple random walk in random environment. Ann Probab, 1998, 26: 1477-1521

9
Kesten H, Kozlov M V, Spitzer F. Limit law for random walk in a random environment. Compos Math, 1975, 30: 145-168

10
Kozlov M V. A random walk on a line with stochastic structure. Theory Probab Appl1973, 18: 406-408

11
Mayer-Wolf E, Roitershtein A, Zeitouni O. Limit theorems for one-dimensional random walks in Markov random environments. Ann Inst Henri Poincaré Probab Stat, 2004, 40: 635-659

DOI

12
Petrov V V. Limit Theorems of Probability Theory: Sequences of Independent Random Variables. Oxford: Clarendon Press, 1995

13
Sinai Ya G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab Appl, 1992, 27: 256-268

DOI

14
Solomon F. Random walks in a random environment. Ann Probab, 1975, 3: 1-31

DOI

15
Sznitman A S. Topics in random walks in random environment. In: School and Conference on Probability Theory, ICTP Lecture Notes Series, Trieste, 17. 2004, 203-266

16
Zeitouni O. Random walks in random environment. In: Tavaré S, Zeitouni O, eds. Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilités de Saint- Flour XXXI-2001. Lecture Notes in Math, Vol 1837. Berlin: Springer, 2004, 189-312

Outlines

/