RESEARCH ARTICLE

Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation

  • Jing AN 1 ,
  • Zhendong LUO , 2 ,
  • Hong LI 3 ,
  • Ping SUN 1
Expand
  • 1. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China
  • 2. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
  • 3. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China

Received date: 29 Aug 2012

Accepted date: 26 Mar 2015

Published date: 24 Jun 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this study, a classical spectral-finite difference scheme (SFDS) for the three-dimensional (3D) parabolic equation is reduced by using proper orthogonal decomposition (POD) and singular value decomposition (SVD). First, the 3D parabolic equation is discretized in spatial variables by using spectral collocation method and the discrete scheme is transformed into matrix formulation by tensor product. Second, the classical SFDS is obtained by difference discretization in time-direction. The ensemble of data are comprised with the first few transient solutions of the classical SFDS for the 3D parabolic equation and the POD bases of ensemble of data are generated by using POD technique and SVD. The unknown quantities of the classical SFDS are replaced with the linear combination of POD bases and a reducedorder extrapolation SFDS with lower dimensions and sufficiently high accuracy for the 3D parabolic equation is established. Third, the error estimates between the classical SFDS solutions and the reduced-order extrapolation SFDS solutions and the implementation for solving the reduced-order extrapolation SFDS are provided. Finally, a numerical example shows that the errors of numerical computations are consistent with the theoretical results. Moreover, it is shown that the reduced-order extrapolation SFDS is effective and feasible to find the numerical solutions for the 3D parabolic equation.

Cite this article

Jing AN , Zhendong LUO , Hong LI , Ping SUN . Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation[J]. Frontiers of Mathematics in China, 2015 , 10(5) : 1025 -1040 . DOI: 10.1007/s11464-015-0469-8

1
Afanasiev K, Hinze M. Adaptive control of a wake flow using proper orthogonal decomposition. Lect Notes Pure Appl Math, 2001, 216: 317-332

2
Algazi V, Sakrison D. On the optimality of Karhunen-Lo`eve expansion. IEEE Trans Inform Theory, 1969, 15: 319-321

DOI

3
Arian E, Fahl M, Sachs E W. Trust-region proper orthogonal decomposition models by optimization method. In: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, 2002. 2002, 3300-3305

4
Aubry N, Holmes P, Lumley J L, Stone E. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J Fluid Dynamics, 1988, 192: 115-173

DOI

5
Cao Y H, Zhu J, Luo Z H, Navon I M. Reduced order modeling of the upper tropical Pacific Ocean model using proper orthogonal decomposition. Comput Math Appl, 2006, 52: 1373-1386

DOI

6
Cao Y H, Zhu J, Navon I M, Luo Z D. A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int J Numer Meth Fluids, 2007, 53: 1571-1583

DOI

7
Fox L, Parker I B. Chebyshev Polynomials in Numerical Analysis. Oxford: Oxford University Press, 1968

8
Fukunaga K. Introduction to Statistical Recognition. New York: Academic Press, 1990

9
Graham M, Kevrekidis I. Alternative approaches to the Karhunen-Loève decomposition for model reduction and data analysis. Comput Chem Eng, 1996, 20: 495-506

DOI

10
Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996

DOI

11
Jolliffe I T. Principal Component Analysis. Berlin: Springer-Verlag, 2002

12
Joslin R D, Gunzburger M D, Nicolaides R, Erlebacher G, Hussaini M Y. A selfcontained automated methodology for optimal flow control validated for transition delay. AIAA Journal, 1997, 35: 816-824

DOI

13
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math, 2001, 90: 117-148

DOI

14
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J Numer Anal, 2002, 40(2): 492-515

DOI

15
Kunisch K, Volkwein S. Proper orthogonal decomposition for optimality systems. ESAIM: Math Model Numer Anal, 2008, 42(1): 1-23

DOI

16
Lanczos C. Trigonometric interpolation of empirical and analytical functions. J Math Phys, 1938, 17: 123-199

17
Li H R, Luo Z D, Chen J. Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problems. Appl Math Model, 2011, 35(5): 2489-2498

DOI

18
Lumley J L. Coherent structures in turbulence. In: Meyer R E, ed. Transition and Turbulence. Proceedings of the Symposium on Transition and Turbulence in Fluids, Madison, WI, October 13-15, 1980. New York: Academic Press, 1981, 215-242

DOI

19
Luo Z D, Chen J, Navon I M, Yang X Z. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non- stationary Navier-Stokes equations. SIAM J Numer Anal, 2008, 47(1): 1-19

DOI

20
Luo Z D, Chen J, Navon I M, Zhu J. An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int J Numer Meth Fluids, 2009, 60(4): 409-436

DOI

21
Luo Z D, Chen J, Sun P, Yang X Z. Finite element formulation based on proper orthogonal decomposition for parabolic equations. Sci China Ser A: Math, 2009, 52(3): 585-596

DOI

22
Luo Z D, Chen J, Zhu J, Wang R W, Navon I M. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model. Int J Numer Meth Fluids, 2007, 55(2): 143-161

DOI

23
Luo Z D, Du J, Xie Z H, Guo Y. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations. Int J Numer Meth Eng, 2011, 88(1): 31-46

DOI

24
Luo Z D, Li H, Zhou Y J, Huang X M. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem. J Math Anal Appl, 2012, 385: 310-321

DOI

25
Luo Z D, Li H, Zhou Y J, Xie Z H. A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems. J Math Anal Appl, 2012, 385: 371-383

DOI

26
Luo Z D, Ou Q L, Xie Z X. A reduced finite difference scheme and error estimates based on POD method for the non-stationary Stokes equation. Appl Math Mech, 2011, 32(7): 847-858

DOI

27
Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. Sci China Ser A: Math, 2007, 50(8): 1186-1196

DOI

28
Luo Z D, Xie Z H, Chen J. A reduced MFE formulation based on POD for the nonstationary conduction-convection problems. Acta Math Sci Ser B Engl Ed, 2011, 31(5): 1765-1785

29
Luo Z D, Xie Z H, Shang Y Q, Chen J. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations. J Comput Appl Math, 2011, 235(8): 2098-2111

DOI

30
Luo Z D, Yang X Z, Zhou Y J. A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation. J Comput Appl Math, 2009, 229(1): 97-107

DOI

31
Luo Z D, Zhou Y J, Yang X Z. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation. Appl Numer Math, 2009, 59(8): 1933-1946

DOI

32
Luo Z D, Zhu J, Wang R W, Navon I M. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model. Comput Meth Appl Mech Eng, 2007, 196(41-44): 4184-4195

DOI

33
Rajaee M, Karlsson S K F, Sirovich L. Low dimensional description of free sheer flow coherent structures and their dynamical behavior. J Fluid Mech, 1994, 258: 1401-1402

DOI

34
Selten F. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J Atmospheric Sci, 1997, 54: 2100-2114

DOI

35
Shvartsman S, Kevrekisis I. Low-dimensional approximation and control of periodic solutions in spatially extended systems. Phys Rev E, 1998, 58(3): 361-368

DOI

36
Sirovich L. Turbulence and the dynamics of coherent sructures: part I–III. Quart Appl Math, 1987, 45(3): 561-590

37
Sun P, Luo Z D, Zhou Y J. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations. Appl Numer Math, 2010, 60(1-2): 154-164

DOI

38
Trefethen L N. Spectral Method in MATLAB. Philadephia: SIAM, 2000

DOI

39
Trültzsch F, Volkwein S. POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput Optim Appl, 2009, 44(1): 83-115

DOI

40
Weideman J A C, Reddy S C. A Matlab differentiation matrix suite. ACM Trans Math Software, 2000, 26: 465-511

DOI

Outlines

/