Frontiers of Mathematics in China >
Scaling limit of local time of Sinai’s random walk
Received date: 24 Nov 2014
Accepted date: 27 Apr 2015
Published date: 12 Oct 2015
Copyright
We prove that the local times of a sequence of Sinai’s random walks converge to those of Brox’s diffusion by proper scaling. Our proof is based on the intrinsic branching structure of the random walk and the convergence of the branching processes in random environment.
Wenming HONG , Hui YANG , Ke ZHOU . Scaling limit of local time of Sinai’s random walk[J]. Frontiers of Mathematics in China, 2015 , 10(6) : 1313 -1324 . DOI: 10.1007/s11464-015-0485-8
1 |
Bouchaud J P, Comtet A, Georges A, Le Doussal P. Classical diffusion of a particle in a one-dimensional random force field. Ann Physics, 1990, 201: 285−341
|
2 |
Brox T. A one-dimensional diffusion process in a Wiener medium. Ann Probab, 1986, 14: 1206−1218
|
3 |
Dwass M. Branching processes in simple random walk. Proc Amer Math Soc, 1975, 51: 270−274
|
4 |
Ethier S N, Kurtz T G. Markov Processes: Characterization and Convergence. 2nd ed. Wiley Series in Probability and Statistics. New York: Wiley, 2005
|
5 |
Fisher D S. Random walks in random environments. Phys Rev A, 1998, 30: 3539−3542
|
6 |
Fisher D S, Le Doussal P, Monthus C. Random walks, reaction-diffusion, and nonequilibrium dynamics of spin chains in one-dimensional random environments. Phys Rev Lett, 1984, 80: 960−964
|
7 |
Golosov A O. On limiting distributions for a random walk in a critical one-dimensional random environment. Russian Math Surveys, 1986, 41: 199−200
|
8 |
Hong W M, Wang H M. Intrinsic branching structure within (L, 1) random walk in random environment and its applications. Infin Dimens Anal Quantum Probab Relat Top, 2013, 16: 1350006 [14 pages]
|
9 |
Hong W M, Yang H. Scaling limit of the local time of the (1, L)-random walk. arXiv: 1402.3949
|
10 |
Hu Y, Shi Z. The local time of simple random walk in random environment. J Theoret Probab, 1998, 11: 765−793
|
11 |
Kesten H. The limit distribution of Sinai’s random walk in random environment. Phys A, 1986, 138: 299−309
|
12 |
Kesten H, Kozlov M V, Spitzer F. A limit law for random walk in a random environment. Compos Math, 1975, 30: 145−168
|
13 |
Kurtz T G. Diffusion approximations for branching processes. Adv Prob, 1979, 5: 262−292
|
14 |
Marinari E, Parisi G, Ruelle D, Windey P. Random walk in a random environment and 1/f noise. Phys Rev Lett, 1983, 50: 1223−1225
|
15 |
Marinari E, Parisi G, Ruelle D, Windey P. On the interpretation of 1/f noise. Comm Math Phys, 1983, 89: 1−12
|
16 |
Rogers L C G. Brownian local times and branching processes. In: Azéma J, Yor M, eds. Séminaire de Probabilités XVIII 1982/83: Proceedings. Lecture Notes in Math, Vol 1059. Berlin: Springer, 1984, 42−55
|
17 |
Seignourel P. Discrete schemes for processes in random media. Probab Theory Related Fields, 2000, 118: 293−322
|
18 |
Sinai Y G. The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab Appl, 1982, 27: 256−268
|
19 |
Zeitouni O. Random walks in random environment. In: Tavaré S, Zeitouni O, eds. Lectures on Probability Theory and Statistics: Ecole d’Eté de Probabilités de Saint-Flour XXXI-2001. Lectu<?Pub Caret?>re Notes in Math, Vol 1837. Berlin: Springer, 2004, 189−312
|
/
〈 | 〉 |