RESEARCH ARTICLE

Zagreb indices of graphs

  • Kinkar Ch. DAS , 1 ,
  • Kexiang XU 2 ,
  • Junki NAM 1
Expand
  • 1. Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
  • 2. College of Science, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China

Received date: 06 Jan 2014

Accepted date: 18 Sep 2014

Published date: 01 Apr 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The first Zagreb index M1(G) is equal to the sum of squares of the degrees of the vertices, and the second Zagreb index M2(G) is equal to the sum of the products of the degrees of pairs of adjacent vertices of the underlying molecular graph G. In this paper, we obtain lower and upper bounds on the first Zagreb index M1(G) of G in terms of the number of vertices (n), number of edges (m), maximum vertex degree (Δ), and minimum vertex degree (δ). Using this result, we find lower and upper bounds on M2(G). Also, we present lower and upper bounds on M2(G) +M2(G) in terms of n, m, Δ, and δ, where G denotes the complement of G. Moreover, we determine the bounds on first Zagreb coindex M1(G) and second Zagreb coindex M2(G). Finally, we give a relation between the first Zagreb index and the second Zagreb index of graph G.

Cite this article

Kinkar Ch. DAS , Kexiang XU , Junki NAM . Zagreb indices of graphs[J]. Frontiers of Mathematics in China, 2015 , 10(3) : 567 -582 . DOI: 10.1007/s11464-015-0431-9

1
Ashrafi A R, Došlić T, Hamzeh A. The Zagreb coindices of graph operations. Discrete Appl Math, 2010, 158: 1571-1578

DOI

2
Balaban A T, Motoc I, Bonchev D, Mekenyan O. Topological indices for structureactivity correlations. Topics Curr Chem, 1983, 114: 21-55

DOI

3
Biler P, Witkowski A. Problems in Mathematical Analysis. New York: Marcel Dekker, Inc, 1990

4
Bondy J A, Murty U S R. Graph Theory with Applications. New York: Macmillan Press, 1976

5
Bullen P S, Mitrinović D S, Vasić P M. Means and their inequalities. Dordrecht: Reidel, 1988

DOI

6
de Caen D. An upper bound on the sum of squares of degrees in a graph. Discrete Math, 1998, 185: 245-248

DOI

7
Dankelmann P, Hellwig A, Volkmann L. Inverse degree and edge-connectivity. Discrete Math, 2009, 309: 2943-2947

DOI

8
Dankelmann P, Swart H C, Van Den Berg P. Diameter and inverse degree. Discrete Math, 2008, 308: 670-673

DOI

9
Das K C. Sharp bounds for the sum of the squares of the degrees of a graph. Kragujevac J Math, 2003, 25: 31-49

10
Das K C. Maximizing the sum of the squares of the degrees of a graph. Discrete Math, 2004, 285: 57-66

DOI

11
Das K C. On comparing Zagreb indices of graphs. MATCH Commun Math Comput Chem, 2010, 63: 433-440

12
Das K C, Gutman I. Some properties of the second Zagreb index. MATCH Commun Math Comput Chem, 2004, 52: 103-112

13
Das K C, Gutman I, Horoldagva B. Comparison between Zagreb indices and Zagreb coindices. MATCH Commun Math Comput Chem, 2012, 68: 189-198

14
Das K C, Gutman I, Zhou B. New upper bounds on Zagreb indices. J Math Chem, 2009, 46: 514-521

DOI

15
Das K C, Xu K, Gutman I. On Zagreb and Harary indices. MATCH Commun Math Comput Chem, 2013, 70: 301-314

16
Eliasi M, Iranmanesh A, Gutman I. Multiplicative versions of first Zagreb index. MATCH Commun Math Comput Chem, 2012, 68: 217-230

17
Erdös P, Pach J, Spencer J. On the mean distance between points of a graph. Congr Numer, 1988, 64: 121-124

18
Fajtlowicz S. On conjectures of graffiti II. Congr Numer, 1987, 60: 189-197

19
Gutman I. Multiplicative Zagreb indices of trees. Bull Soc Math Banja Luka, 2011, 18: 17-23

20
Gutman I, Das K C. The first Zagreb index 30 years after. MATCH Commun Math Comput Chem, 2004, 50: 83-92

21
Gutman I, Ghorbani M. Some properties of the Narumi-Katayama index. Appl Math Lett, 2012, 25: 1435-1438

DOI

22
Gutman I, Ruščić B, Trinajstić N, Wilcox C F. Graph theory and molecular orbitals. XII. Acyclic polyenes. J Chem Phys, 1975, 62: 3399-3405

DOI

23
Gutman I, Trinajstić N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem Phys Lett, 1972, 17: 535-538

DOI

24
Mitrinović D S. Analytic Inequalities. Berlin-Heidelberg-New York: Springer, 1970

DOI

25
Narumi H, Katayama M. Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons. Mem Fac Engin Hokkaido Univ, 1984, 16: 209-214

26
Nikolić S, Kovačević G, Milićević A, Trinajstić N. The Zagreb indices 30 years after. Croat Chem Acta, 2003, 76: 113-124

27
Radon J. Über die absolut additiven Mengenfunktionen. Wiener Sitzungsber, 1913, 122: 1295-1438

28
Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim: Wiley-VCH, 2000

DOI

29
Todeschini R, Consonni V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun Math Comput Chem, 2010, 64: 359-372

30
Xu K. The Zagreb indices of graphs with a given clique number. Appl Math Lett, 2011, 24: 1026-1030

DOI

31
Xu K, Das K C. Trees, unicyclic, and bicyclic graphs extremal with respect to multiplicative sum Zagreb index. MATCH Commun Math Comput Chem, 2012, 68: 257-272

32
Xu K, Das K C, Balachandran S. Maximizing the Zagreb indices of (n,m)-graphs. MATCH Commun Math Comput Chem, 2014, 72: 641-654

33
Xu K, Das K C, Tang K. On the multiplicative Zagreb coindex of graphs. Opuscula Math, 2013, 33: 197-210

DOI

34
Xu K, Hua H. A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs. MATCH Commun Math Comput Chem, 2012, 68: 241-256

35
Yan Z, Liu H, Liu H. Sharp bounds for the second Zagreb index of unicyclic graphs. J Math Chem, 2007, 42: 565-574

DOI

36
Zhang L, Wu B. The Nordhaus-Gaddum-type inequalities for some chemical indices. MATCH Commun Math Comput Chem, 2005, 54: 189-194

37
Zhou B. Upper bounds for the Zagreb indices and the spectral radius of series-parallel graphs. Int J Quantum Chem, 2007, 107: 875-878

DOI

38
Zhou B, Gutman I. Further properties of Zagreb indices. MATCH Commun Math Comput Chem, 2005, 54: 233-239

39
Zhou B, Trinajstić N. On reciprocal molecular topological index. J Math Chem, 2008, 44: 235-243

DOI

Outlines

/