Frontiers of Mathematics in China >
Completable nilpotent Lie superalgebras
Received date: 27 Sep 2013
Accepted date: 14 Jan 2014
Published date: 01 Apr 2015
Copyright
We discuss a class of filiform Lie superalgebras Ln,m. From these Lie superalgebras, all the other filiform Lie superalgebras can be obtained by deformations. We have decompositions of (Ln,m) and (Ln,m). By computing a maximal torus on each Ln,m, we show that Ln,m are completable nilpotent Lie superalgebras. We also view Ln,m as Lie algebras, prove that Ln,m are of maximal rank, and show that Ln,m are completable nilpotent Lie algebras. As an application of the results, we show a Heisenberg superalgebra is a completable nilpotent Lie superalgebra.
Mingzhong WU . Completable nilpotent Lie superalgebras[J]. Frontiers of Mathematics in China, 2015 , 10(3) : 697 -713 . DOI: 10.1007/s11464-014-0362-x
1 |
Bermúdez J M A, Campoamor R. Completable filiform Lie algebras. Linear Algebra Appl, 2003, 367: 185-191
|
2 |
Bordemann M, Gómez J R, Khakimdjanov Y, Navarro R M. Some deformations of nilpotent Lie superalgebras. J Geom Phys, 2007, 57: 1391-1403
|
3 |
Bourbaki N. Groupes et Algèbres de Lie. Chap. I. Paris: Hermann, 1960
|
4 |
Chun J H, Lee J S. On complete Lie superalgebras. Commun Korean Math Soc, 1996, 2: 323-334
|
5 |
Gómez J R, Khakimdjanov Y, Navarro R M. Some problems concerning to nilpotent Lie superalgebras. J Geom Phys, 2004, 51: 473-486
|
6 |
Gómez J R, Khakimdjanov Y, Navarro R M. Infinitesimal deformations of the Lie superalgebra Ln,m. J Geom Phys, 2008, 58: 849-859
|
7 |
Jacobson N. Lie Algebras. New York: Wiley Interscience, 1962
|
8 |
Jiang C P, Meng D J, Zhang S Q. Some complete Lie algebras. J Algebra, 1996, 186: 807-817
|
9 |
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96
|
10 |
Khakimdjanov Y, Navarro R M. A complete description of all the infinitesimal deformations of the Lie superalgebra Ln,m. J Geom Phys, 2010, 60: 131-141
|
11 |
Meng D J. Some results on complete Lie algebras. Comm Algebra, 1994, 22: 5457-5507
|
12 |
Meng D J, Zhu L S. Solvable complete Lie algebras I. Comm Algebra, 1996, 24: 4187-4197
|
13 |
Mostow G D. Fully reducible subgroups of algebaic groups. Amer J Math, 1956, 78: 200-221
|
14 |
Ren B, Meng D J. Some 2-step nilpotent Lie algebras I. Linear Algebra Appl, 2001, 338: 77-98
|
15 |
Santharoubane L J. Kac-Moody Lie algebras and the classification of nilpotent Lie algebras of maximal rank. Canad J Math, 1982, 34: 1215-1239
|
16 |
Schenkman E V. A theory of subinvariant Lie algebras. Amer J Math, 1951, 73: 453-474
|
17 |
Vergne M. Cohomologie des algèbres de Lie nilpotentes, Application à l’étude de la variété des algèbres de Lie nilpotentes. Bull Soc Math France, 1970, 98: 81-116
|
18 |
Wang L Y, Meng D J. Some results on complete Lie superalgebras. Linear Algebra Appl, 2002, 355: 1-14
|
19 |
Wang L Y, Meng D J. Some complete Lie superalgebras. Linear Algebra Appl, 2003, 369: 339-349
|
20 |
Zhu L S, Meng D J. The classification of complete Lie algebras with low dimensions. Algebra Colloq, 1997, 4: 95-109
|
/
〈 | 〉 |