RESEARCH ARTICLE

Completable nilpotent Lie superalgebras

  • Mingzhong WU , 1,2
Expand
  • 1. Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
  • 2. Department of Mathematics, China West Normal University, Nanchong 637002, China

Received date: 27 Sep 2013

Accepted date: 14 Jan 2014

Published date: 01 Apr 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We discuss a class of filiform Lie superalgebras Ln,m. From these Lie superalgebras, all the other filiform Lie superalgebras can be obtained by deformations. We have decompositions of Der0¯(Ln,m) and Der1 (Ln,m). By computing a maximal torus on each Ln,m, we show that Ln,m are completable nilpotent Lie superalgebras. We also view Ln,m as Lie algebras, prove that Ln,m are of maximal rank, and show that Ln,m are completable nilpotent Lie algebras. As an application of the results, we show a Heisenberg superalgebra is a completable nilpotent Lie superalgebra.

Cite this article

Mingzhong WU . Completable nilpotent Lie superalgebras[J]. Frontiers of Mathematics in China, 2015 , 10(3) : 697 -713 . DOI: 10.1007/s11464-014-0362-x

1
Bermúdez J M A, Campoamor R. Completable filiform Lie algebras. Linear Algebra Appl, 2003, 367: 185-191

DOI

2
Bordemann M, Gómez J R, Khakimdjanov Y, Navarro R M. Some deformations of nilpotent Lie superalgebras. J Geom Phys, 2007, 57: 1391-1403

DOI

3
Bourbaki N. Groupes et Algèbres de Lie. Chap. I. Paris: Hermann, 1960

4
Chun J H, Lee J S. On complete Lie superalgebras. Commun Korean Math Soc, 1996, 2: 323-334

5
Gómez J R, Khakimdjanov Y, Navarro R M. Some problems concerning to nilpotent Lie superalgebras. J Geom Phys, 2004, 51: 473-486

DOI

6
Gómez J R, Khakimdjanov Y, Navarro R M. Infinitesimal deformations of the Lie superalgebra Ln,m. J Geom Phys, 2008, 58: 849-859

DOI

7
Jacobson N. Lie Algebras. New York: Wiley Interscience, 1962

8
Jiang C P, Meng D J, Zhang S Q. Some complete Lie algebras. J Algebra, 1996, 186: 807-817

DOI

9
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96

DOI

10
Khakimdjanov Y, Navarro R M. A complete description of all the infinitesimal deformations of the Lie superalgebra Ln,m. J Geom Phys, 2010, 60: 131-141

DOI

11
Meng D J. Some results on complete Lie algebras. Comm Algebra, 1994, 22: 5457-5507

DOI

12
Meng D J, Zhu L S. Solvable complete Lie algebras I. Comm Algebra, 1996, 24: 4187-4197

13
Mostow G D. Fully reducible subgroups of algebaic groups. Amer J Math, 1956, 78: 200-221

DOI

14
Ren B, Meng D J. Some 2-step nilpotent Lie algebras I. Linear Algebra Appl, 2001, 338: 77-98

DOI

15
Santharoubane L J. Kac-Moody Lie algebras and the classification of nilpotent Lie algebras of maximal rank. Canad J Math, 1982, 34: 1215-1239

DOI

16
Schenkman E V. A theory of subinvariant Lie algebras. Amer J Math, 1951, 73: 453-474

DOI

17
Vergne M. Cohomologie des algèbres de Lie nilpotentes, Application à l’étude de la variété des algèbres de Lie nilpotentes. Bull Soc Math France, 1970, 98: 81-116

18
Wang L Y, Meng D J. Some results on complete Lie superalgebras. Linear Algebra Appl, 2002, 355: 1-14

DOI

19
Wang L Y, Meng D J. Some complete Lie superalgebras. Linear Algebra Appl, 2003, 369: 339-349

DOI

20
Zhu L S, Meng D J. The classification of complete Lie algebras with low dimensions. Algebra Colloq, 1997, 4: 95-109

Outlines

/