RESEARCH ARTICLE

Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group

  • Liangchen LI 1,2 ,
  • Xiangwen LI , 1
Expand
  • 1. Department of Mathematics, Huazhong Normal University, Wuhan 430079, China
  • 2. Department of Mathematics, Luoyang Normal University, Luoyang 471022, China

Received date: 07 Aug 2013

Accepted date: 14 Apr 2014

Published date: 12 Feb 2015

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Tutte conjectured that every 4-edge-connected graph admits a nowhere-zero 3-flow. In this paper, we show that this conjecture is true for Cayley graph on generalized dihedral groups and generalized quaternion groups, which generalizes the result of F. Yang and X. Li [Inform. Process. Lett., 2011, 111: 416–419]. We also generalizes an early result of M. Nánásiová and M. Škoviera [J. Algebraic Combin., 2009, 30: 103–110].

Cite this article

Liangchen LI , Xiangwen LI . Nowhere-zero 3-flows in Cayley graphs on generalized dihedral group and generalized quaternion group[J]. Frontiers of Mathematics in China, 2015 , 10(2) : 293 -302 . DOI: 10.1007/s11464-014-0378-2

1
Alspach B, Liu Y, Zhang C-Q. Nowhere-zero 4-flows and Cayley graphs on solvable groups. SIAM J Discrete Math, 1996, 9: 151-154

DOI

2
Bondy J A, Murty U S R. Graphs Theory with Applications. New York: Macmillan Press, 1976

3
Fan G, Zhou C. Ore condition and nowhere-zero 3-flows. SIAM J Discrete Math, 2008, 22: 288-294

DOI

4
Jaeger F. Flows and generalized coloring theorems in graphs. J Combin Theory Ser B, 1979, 26: 205-216

DOI

5
Jaeger J, Linial N, Payan C, Tarsi N. Group connectivity of graphs—a nonhomogeneous analogue of nowhere zero flow properties. J Combin Theory Ser B, 1992, 56: 165-182

DOI

6
Lai H-J. Group connectivity of 3-edge-connected chordal graphs. Graphs Combin, 2000, 16: 165-176

DOI

7
Li L, Li X, Shu C. Group connectivity of bridged graphs. Graphs Combin, 2013, 29: 1059-1066

DOI

8
Li X, Shao Y, Lai H-J. Degree condition and Z3-connectivity. Discrete Math, 2012, 312: 1658-1669

DOI

9
Lovász L M, Thomassen C, Wu Y, Zhang C-Q. Nowhere-zero 3-flows and modulo k-orientations. J Combin Theory Ser B, 2013, 103: 587-598

DOI

10
Nánásiová M, Škoviera M. Nowhere-zero flows in Cayley graphs and Sylow 2-subgroups. J Algebraic Combin, 2009, 30: 103-110

DOI

11
Nedela R, Škoviera M. Cayley snarks and almost simple groups. Combinatorica, 2001, 21: 583-590

DOI

12
Potočnik P. Edge-colorings of cubic graphs admitting a solvable ‘vertex-transitive group’. J Combin Theory Ser B, 2004, 91: 289-300

DOI

13
Potočnik P, Škoviera M, Škrekovski R. Nowhere-zero 3-flows in abelian Cayley raphs. Discrete Math, 2005, 297: 119-127

DOI

14
Thomassen C. The weak 3-flow conjecture and the weak circular flow conjecture. J Combin Theory Ser B, 2012, 102: 521-529

DOI

15
Tutte W T. On the imbedding of linear graphs in surfaces. Proc Lond Math Soc, Ser 2, 1949, 51: 474-483

16
Tutte W T. A contribution on the theory of chromatic polynomial. Canad J Math, 1954, 6: 80-91

DOI

17
Tutte W T. On the algebraic theory of graph colorings. J Combin Theory, 1966, 1: 15-50

DOI

18
Watkins A. E. Connectivity of transitive graphs. J Combin Theory, 1970, 8: 23-29

DOI

19
Yang F, Li X. Nowhere-zero 3-flows in dihedral Cayley graphs. Inform Process Lett, 2011, 111: 416-419

DOI

20
Yin J, Zhang Y. Pósa-condition and nowhere-zero 3-flows. Discrete Math, 2010, 311: 897-907

DOI

Outlines

/