RESEARCH ARTICLE

Strong law of large numbers for pair-wise extended lower/upper negatively dependent random variables

  • Fengyang CHENG
Expand
  • Department of Mathematics, Soochow University, Suzhou 215006, China

Received date: 12 Mar 2012

Accepted date: 24 Mar 2014

Published date: 26 Aug 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We establish some strong limit theorems for a sequence of pair-wise extended lower/upper negatively dependent random variables and give some new examples of dependent random variables.

Cite this article

Fengyang CHENG . Strong law of large numbers for pair-wise extended lower/upper negatively dependent random variables[J]. Frontiers of Mathematics in China, 2014 , 9(5) : 1019 -1031 . DOI: 10.1007/s11464-014-0376-4

1
Block H W, Savits T H, Shaked M. Some concepts of negative dependence. Ann Probab, 1982, 10: 765-772

DOI

2
Chen Y, Chen A Y, Ng K W. The strong law of large numbers for extended negatively dependent random variables. J Appl Probab, 2010, 47: 908-922

DOI

3
Chen Y, Yuen K C, Ng K W. Precise large deviations of random sums in presence of negative dependence and consistent variation. Methodol Comput Appl Probab, 2011, 13: 821-833

DOI

4
Cheng F Y, Li N. Asymptotics for the tail probability of random sums with a heavytailed random number and extended negatively dependent summands. Chin Ann Math Ser B, 2014, 35: 69-78

DOI

5
Ebrahimi N, Ghosh M. Multivariate negative dependence. Comm Statist Theory Methods, 1981, 8: 625-641

6
Etemadi N. An elementary proof of the strong law of large numbers. Z Wahrsch verw Geb, 1981, 55: 119-122

7
Etemadi N. Stability of sums weighted nonnegative random variables. J Multivariate Anal, 1983, 13: 361-365

DOI

8
Lehmann E L. Some concepts of dependence. Ann Math Stat, 1966, 37: 1137-1153

DOI

9
Liu L. Precise large deviations for dependent random variables with heavy tails. Statist Probab Lett, 2009, 79: 1290-1298

DOI

10
Wang K, Wang Y, Gao Q. Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate. Methodol Comput Appl Probab, 2013, 15: 109-124

DOI

11
Wang Y, Cheng D. Basic renewal theorems for random walks with widely dependent increments. J Math Anal Appl, 2011, 384: 597-606

DOI

Outlines

/