RESEARCH ARTICLE

Numerical comparison of three stochastic methods for nonlinear PN junction problems

  • Wenqi YAO 1 ,
  • Tiao LU , 1,2
Expand
  • 1. School of Mathematical Sciences, Peking University, Beijing 100871, China
  • 2. HEDPS, CAPT and LMAM, Peking University, Beijing 100871, China

Received date: 27 Aug 2012

Accepted date: 26 Jul 2013

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.

Cite this article

Wenqi YAO , Tiao LU . Numerical comparison of three stochastic methods for nonlinear PN junction problems[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 659 -698 . DOI: 10.1007/s11464-013-0327-5

1
AskeyR, WilsonJ. Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. Mem Amer Math Soc, No 319. Providence: Amer Math Soc, 1985

2
BabuškaI, TemponeR, ZourarisG E. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J Numer Anal, 2004, 42(2): 800-825

DOI

3
Bäck,J, NobileF, TamelliniL, TemponeR. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Proceedings of the International Conference on Spectral and High Order Methods (ICOSAHOM 09). Berlin: Springer-Verlag, 2010

4
BankR E, RoseD J. Global approximate Newton methods. Numer Math, 1981, 37: 279-295

DOI

5
BankR E, RoseD J, FichtnerW. Numerical methods for semiconductor device simulation. SIAM J Sci Stat Comput, 1983, 4: 416-435

DOI

6
BejanA. Shape and Structure, from Engineering to Nature. New York: Cambridge Univ Press, 2000

7
BürglerJ F, BankR E, FichtnerW, SmithR K. A new discretization for the semiconductor current continuity equations. IEEE Trans Comput-Aided Design Integrat Circuits Sys, 1989, 8: 479-489

DOI

8
BürglerJ F, ConghranW M, FichtnerJr W. An adaptive grid refinement strategy for the drift-diffusion equations. IEEE Trans Comput-Aided Design Integrat Circuits Sys, 1991, 10: 1251-1258

DOI

9
DebM K, BabuškaI M, OdenJ T. Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Meth Appl Mech Engrg, 2001, 190: 6359-6372

DOI

10
ElmanH C, MillerC W, PhippsE T, TuminaroR S. Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int J Uncertainty Quant, 2011, 1(1): 19-33

DOI

11
FishmanG. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag, 1996

DOI

12
GanapathysubramanianB, ZabarasN. Sparse grid collocation methods for stochastic natural convection problems. J Comput Phys, 2007, 225(1): 652-685

DOI

13
GhanemR G, SpanosP. Stochastic Finite Elements: a Spectral Approach. New York: Springer, 1991

DOI

14
LiR. On multi-mesh h-adaptive methods. J Sci Comput, 2005, 24(3): 321-341

DOI

15
LoèveM. Probability Theory. 4th ed. Berlin: Springer-Verlag, 1977

16
NovakE, RitterK. High dimensional integration of smooth functions over cubes. Numer Math, 1996, 75: 79-97

DOI

17
NovakE, RitterK. Simple cubature formulas with high polynomial exactness. Constructive Approx, 1999, 15: 499-522

DOI

18
SmolyakS A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl Akad Nauk SSSR, 1963, 148: 1042-1045(in Russian); Soviet Math Dokl, 1963, 4: 240-243

19
TaurY, NingH. Fundamentals of Modern VLSI Devices. 2nd ed. Cambridge: Cambridge Univ Press, 2009

20
Van TreesH L. Detection, Estimation, and Modulation Theory, Part I. New York: Wiley, 1968

21
WasilkowskiG, WozniakowskiH. Explicit cost bounds of algorithms for multivariate tensor product problems. J Complexity, 1995, 11: 1-56

DOI

22
WienerN. The homogeneous chaos. Amer J Math, 1938, 60: 897-936

DOI

23
XiuD, HesthavenJ. High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput, 2005, 27: 1118-1139

DOI

24
XiuD, KarniadakisG E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput, 2002, 24(2): 619-644

DOI

25
XiuD, KarniadakisG E. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput Methods Appl Math Engrg, 2002, 191: 4927-4948

DOI

26
XiuD, KarniadakisG E. Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys, 2003, 187: 137-167

DOI

27
XiuD, TartakovskyD M. Numerical methods for differential equations in random domain. SIAM J Sci Comput, 2006, 28: 1167-1185

DOI

28
YuS, ZhaoY, ZengL, DuG, KangJ, HanR, LiuX. Impact of line-edge roughness on double-gate Schottky-barrier filed-effect transistors. IEEE Trans Electron Devices, 2009, 56(6): 1211-1219

DOI

Outlines

/