Frontiers of Mathematics in China >
Numerical comparison of three stochastic methods for nonlinear PN junction problems
Received date: 27 Aug 2012
Accepted date: 26 Jul 2013
Published date: 24 Jun 2014
Copyright
We apply the Monte Carlo, stochastic Galerkin, and stochastic collocation methods to solving the drift-diffusion equations coupled with the Poisson equation arising in semiconductor devices with random rough surfaces. Instead of dividing the rough surface into slices, we use stochastic mapping to transform the original deterministic equations in a random domain into stochastic equations in the corresponding deterministic domain. A finite element discretization with the help of AFEPack is applied to the physical space, and the equations obtained are solved by the approximate Newton iterative method. Comparison of the three stochastic methods through numerical experiment on different PN junctions are given. The numerical results show that, for such a complicated nonlinear problem, the stochastic Galerkin method has no obvious advantages on efficiency except accuracy over the other two methods, and the stochastic collocation method combines the accuracy of the stochastic Galerkin method and the easy implementation of the Monte Carlo method.
Wenqi YAO , Tiao LU . Numerical comparison of three stochastic methods for nonlinear PN junction problems[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 659 -698 . DOI: 10.1007/s11464-013-0327-5
1 |
AskeyR, WilsonJ. Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. Mem Amer Math Soc, No 319. Providence: Amer Math Soc, 1985
|
2 |
BabuškaI, TemponeR, ZourarisG E. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J Numer Anal, 2004, 42(2): 800-825
|
3 |
Bäck,J, NobileF, TamelliniL, TemponeR. Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Proceedings of the International Conference on Spectral and High Order Methods (ICOSAHOM 09). Berlin: Springer-Verlag, 2010
|
4 |
BankR E, RoseD J. Global approximate Newton methods. Numer Math, 1981, 37: 279-295
|
5 |
BankR E, RoseD J, FichtnerW. Numerical methods for semiconductor device simulation. SIAM J Sci Stat Comput, 1983, 4: 416-435
|
6 |
BejanA. Shape and Structure, from Engineering to Nature. New York: Cambridge Univ Press, 2000
|
7 |
BürglerJ F, BankR E, FichtnerW, SmithR K. A new discretization for the semiconductor current continuity equations. IEEE Trans Comput-Aided Design Integrat Circuits Sys, 1989, 8: 479-489
|
8 |
BürglerJ F, ConghranW M, FichtnerJr W. An adaptive grid refinement strategy for the drift-diffusion equations. IEEE Trans Comput-Aided Design Integrat Circuits Sys, 1991, 10: 1251-1258
|
9 |
DebM K, BabuškaI M, OdenJ T. Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Meth Appl Mech Engrg, 2001, 190: 6359-6372
|
10 |
ElmanH C, MillerC W, PhippsE T, TuminaroR S. Assessment of collocation and Galerkin approaches to linear diffusion equations with random data. Int J Uncertainty Quant, 2011, 1(1): 19-33
|
11 |
FishmanG. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer-Verlag, 1996
|
12 |
GanapathysubramanianB, ZabarasN. Sparse grid collocation methods for stochastic natural convection problems. J Comput Phys, 2007, 225(1): 652-685
|
13 |
GhanemR G, SpanosP. Stochastic Finite Elements: a Spectral Approach. New York: Springer, 1991
|
14 |
LiR. On multi-mesh h-adaptive methods. J Sci Comput, 2005, 24(3): 321-341
|
15 |
LoèveM. Probability Theory. 4th ed. Berlin: Springer-Verlag, 1977
|
16 |
NovakE, RitterK. High dimensional integration of smooth functions over cubes. Numer Math, 1996, 75: 79-97
|
17 |
NovakE, RitterK. Simple cubature formulas with high polynomial exactness. Constructive Approx, 1999, 15: 499-522
|
18 |
SmolyakS A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl Akad Nauk SSSR, 1963, 148: 1042-1045(in Russian); Soviet Math Dokl, 1963, 4: 240-243
|
19 |
TaurY, NingH. Fundamentals of Modern VLSI Devices. 2nd ed. Cambridge: Cambridge Univ Press, 2009
|
20 |
Van TreesH L. Detection, Estimation, and Modulation Theory, Part I. New York: Wiley, 1968
|
21 |
WasilkowskiG, WozniakowskiH. Explicit cost bounds of algorithms for multivariate tensor product problems. J Complexity, 1995, 11: 1-56
|
22 |
WienerN. The homogeneous chaos. Amer J Math, 1938, 60: 897-936
|
23 |
XiuD, HesthavenJ. High-order collocation methods for differential equations with random inputs. SIAM J Sci Comput, 2005, 27: 1118-1139
|
24 |
XiuD, KarniadakisG E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput, 2002, 24(2): 619-644
|
25 |
XiuD, KarniadakisG E. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput Methods Appl Math Engrg, 2002, 191: 4927-4948
|
26 |
XiuD, KarniadakisG E. Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys, 2003, 187: 137-167
|
27 |
XiuD, TartakovskyD M. Numerical methods for differential equations in random domain. SIAM J Sci Comput, 2006, 28: 1167-1185
|
28 |
YuS, ZhaoY, ZengL, DuG, KangJ, HanR, LiuX. Impact of line-edge roughness on double-gate Schottky-barrier filed-effect transistors. IEEE Trans Electron Devices, 2009, 56(6): 1211-1219
|
/
〈 | 〉 |