Frontiers of Mathematics in China >
Diophantine inequality involving binary forms
Received date: 16 Jul 2013
Accepted date: 24 Sep 2013
Published date: 24 Jun 2014
Copyright
Let r= 2d-1 + 1. We investigate the diophantine inequality
where Φi(x, y) ∈Z[x, y] (1≤i≤r) are nondegenerate forms of degree d= 3 or 4.Key words: Diophantine inequality; binary form
Boqing XUE . Diophantine inequality involving binary forms[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 641 -657 . DOI: 10.1007/s11464-013-0334-6
1 |
BakerR C. Cubic diophantine inequalities. Mathematika, 1982, 29: 83-92
|
2 |
BakerR C, BrüdernJ, WooleyT D. Cubic diophantine inequalities. Mathematika, 1995, 42: 264-277
|
3 |
BrowningT D. Quantitative Arithmetic of Projective Varieties. Progress in Math, Vol 277. Basel: Birkhäuser, 2009
|
4 |
BrowningT D, DietmannR, ElliottP D T A. Least zero of a cubic form. Math Ann, 2012, 352: 745-778
|
5 |
BrüdernJ. Cubic diophantine inequalities. Mathematika, 1988, 35: 51-58
|
6 |
BrüdernJ. Cubic diophantine inequalities (II). J Lond Math Soc, 1996, 53(2): 1-18
|
7 |
BrüdernJ. Cubic diophantine inequalities (III). Periodica Mathematica Hungarica, 2001, 42(1-2): 211-226
|
8 |
CookR J. The value of additive forms at prime arguments. J Théor Nombres Bordeaux, 2001, 13: 77-91
|
9 |
DavenportH. Analytic Methods for Diophantine Equations and Diophantine Inequalities. 2nd ed. Cambridge: Cambridge University Press, 2005
|
10 |
DavenportH, HeilbronnH. On indefinite quadratic forms in five variables. J Lond Math Soc, 1946, 21: 185-193
|
11 |
HarveyM P. Cubic diophantine inequalities involving a norm form. Int J Number Theory, 2011, 7(8): 2219-2235
|
12 |
TitchmarshE C. The Theory of the Riemann Zeta-Function. 2nd ed. Oxford: Oxford University Press, 1986
|
13 |
WatsonG L. On indefinite quadratic forms in five variables. Proc Lond Math Soc, 1953, 3(3): 170-181
|
14 |
WooleyT D. On Weyl’s inequality, Hua’s lemma and exponential sums over binary forms. Duke Math J, 1999, 100: 373-423
|
15 |
WooleyT D. Vinogradov’s mean value theorem via efficient congruencing. Ann Math, 2012, 175: 1575-1627
|
/
〈 | 〉 |