RESEARCH ARTICLE

Some remarks on cotilting comodules

  • Sujuan ZHANG 1,2 ,
  • Hailou YAO , 1
Expand
  • 1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • 2. Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Received date: 21 Jun 2013

Accepted date: 06 Nov 2013

Published date: 24 Jun 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study cotilting comodules and f-cotilting comodules and give a description of localization of f-cotilting comodules and classical tilting comodules. First, we introduce T-cotilting injective comodules and their dimensions which are important for researching cotilting comodules. Then we characterize the localization in f-cotilting comodules, finitely copresented comodules, and classical tilting comodules. In particular, we obtain a localizing property about finitely copresented comodules.

Cite this article

Sujuan ZHANG , Hailou YAO . Some remarks on cotilting comodules[J]. Frontiers of Mathematics in China, 2014 , 9(3) : 699 -714 . DOI: 10.1007/s11464-014-0345-y

1
GabrielP. Des categories abeliennes. Bull Soc Math France, 1962, 90: 323-448

2
GöbelR, PrelleR. Solution of two problems on cotorsion Abelian groups, Arch Math, 1978, 31: 423-431

DOI

3
GoodearlK R. Localization and splitting in hereditary noetherian prime rings. Pacific J Math, 1974, 53(1): 137-151

DOI

4
GoodearlK R, WarfieldR B. An Introduction to Noncommutative Noetherian Rings. London Math Soc Student Ser 16. Cambridge: Cambridge Univ Press, 1989

5
JaraP, MerinoL M, NavarroG. On path coalgebras of quivers with relations. Colloq Math, 2005, 102: 49-65

DOI

6
JaraP, MerinoL M, NavarroG. Localization in tame and wild coalgebras. J Pure Appl Algebra, 2007, 211: 342-359

DOI

7
JaraP, MerinoL M, NavarroG, RuizJ F. Localization in coalgebras. Stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856

DOI

8
NăstăsescuC, TorrecillasB. Colocalization on Grothendieck categories with applications to coalgebras. J Algebra, 1996, 185: 108-124

DOI

9
NavarroG. Representation Theory of Coalgebras. Localization in Coalgebras Ph D Thesis. Granada: Universidad de Granada, 2006

10
NavarroG. Some remarks on localization in coalgebras. Comm Algebra, 2008, 36: 3447-3466

DOI

11
SimsonD. Cotilted coalgebras and tame comodule type. Arab J Sci Eng, 2008, 33: 421-445

12
WangM. Tilting comodules over semi-perfect coalgebras. Algebra Colloq, 1999, 6: 461-472

13
WoodcockD. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25(9): 2775-2794

DOI

Outlines

/