(q, r) boundedness of general rough pseudo-differential operators

Yiwu HE, Xiangrong ZHU

PDF(544 KB)
PDF(544 KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (6) : 367-378. DOI: 10.3868/s140-DDD-024-0021-x
RESEARCH ARTICLE

(q, r) boundedness of general rough pseudo-differential operators

Author information +
History +

Abstract

In this paper, we consider the (q,r) boundedness of the pseudo-differential operators with the amplitude aLpSρm(p1,mR,0ρ1). When 0<r, 1p, q, rp, 1r1p+1q, we prove that if

           m<n(ρ1)min{2,p,q}nρ(1p+1q1r),

then for any aLpSρm, the pseudo-differential operator Ta is bounded from Lq to Lr. It is a generalization and improvement of the known theorems and in general the conditions on r, m are sharp.

Keywords

Pseudo-differential operator / rough Hrmander class / (q, r) boundedness

Cite this article

Download citation ▾
Yiwu HE, Xiangrong ZHU. (q, r) boundedness of general rough pseudo-differential operators. Front. Math. China, 2024, 19(6): 367‒378 https://doi.org/10.3868/s140-DDD-024-0021-x

References

[1]
Álvarez J, Hounie J. Estimates for the kernel and continuity properties of pseudo-differential operators. Ark Mat 1990; 28(1): 1–22
[2]
Calderón A-P, Vaillancourt R. A class of bounded pseudo-differential operators. Proc Nat Acad Sci USA 1972; 69: 1185–1187
[3]
Ching C H. Pseudo-differential operators with nonregular symbols. J Differential Equations 1972; 11: 436–447
[4]
Guo J W, Zhu X R. Some notes on endpoint estimates for pseudo-differential operators. Mediterr J Math 2022; 19(6): 260
[5]
Hörmander L. Pseudo-differential operators. Comm Pure Appl Math 1965; 18: 501–517
[6]
HörmanderL. Pseudo-differential operators and hypoelliptic equations. In: Singular Integrals, Proc Sympos Pure Math, Vol X. Providence, RI: AMS, 1967: 138–183
[7]
Hörmander L. On the L2 continuity of pseudo-differential operators. Comm Pure Appl Math 1971; 24: 529–535
[8]
Hounie J. On the L2-continuity of pseudodifferential operators. Comm Partial Differential Equations 1986; 11(7): 765–778
[9]
Kenig C E, Staubach W. Ψ-pseudodifferential operators and estimates for maximal oscillatory integrals. Studia Math 2007; 183(3): 249–258
[10]
Kohn J J, Nirenberg L. An algebra of pseudo-differential operators. Comm Pure Appl Math 1965; 18: 269–305
[11]
Michalowski N, Rule D, Staubach W. Multilinear pseudodifferential operators beyond Calderon-Zygmund theory. J Math Anal Appl 2014; 414(1): 149–165
[12]
Miyachi A. On some singular Fourier multipliers. J Fac Sci Univ Tokyo Sect IA Math 1981; 28(2): 267–315
[13]
Rodino L. On the boundedness of pseudo differential operators in the class Lρ,1m. Proc Amer Math Soc 1976; 58: 211–215
[14]
Rodríguez-López S, Staubach W. Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators. J Funct Anal 2013; 264(10): 2356–2385
[15]
SteinE M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, Vol 43. Princeton, NJ: Princeton University Press, 1993

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(544 KB)

Accesses

Citations

Detail

Sections
Recommended

/