Means and equations of means

Qian ZHANG

PDF(972 KB)
PDF(972 KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (6) : 317-355. DOI: 10.3868/s140-DDD-024-0019-x
RESEARCH ARTICLE

Means and equations of means

Author information +
History +

Abstract

Over the past two decades, means and mean equations have been popular directions of research in the field of functional equations. This paper first introduces the definition and properties of mean as well as the development of the Gauss iteration, invariant equations, and the M-S problem. It then reviews the Bajraktarević mean, the Cauchy mean, and other related means, especially elaborating on the progress of researching corresponding equality and invariance problems. Both the Bajraktarević mean and the Cauchy mean contain two derivative functions, and the corresponding equation problems have been basically solved. However, the invariance of these two symmetric means, due to the presence of four unknown functions, has not been fully solved. Finally, this paper introduces the applications of means in other fields.

Graphical abstract

Keywords

Mean / equality / invariance / Cauchy mean / Bajraktarević mean

Cite this article

Download citation ▾
Qian ZHANG. Means and equations of means. Front. Math. China, 2024, 19(6): 317‒355 https://doi.org/10.3868/s140-DDD-024-0019-x

E-mail: zhangqian@swust.edu.cn

References

[1]
Aczél J. On mean values. Bull Amer Math Soc 1948; 54: 392–400
[2]
Aczél J. The state of the second part of Hilbert’s fifth problem. Bull Amer Math Soc (N S) 1989; 20(2): 153–163
[3]
Baják S, Páles Z. Computer aided solution of the invariance equation for two-variable Gini means. Comput Math Appl 2009; 58(2): 334–340
[4]
Baják S, Páles Z. Computer aided solution of the invariance equation for two-variable Stolarsky means. Appl Math Comput 2010; 216(11): 3219–3227
[5]
Baják S, Páles Z. Solving invariance equations involving homogeneous means with the help of computer. Appl Math Comput 2013; 219(11): 6297–6315
[6]
Bajraktarević M. Sur une équation fonctionnelle aux valeurs moyennes. Glasnik Mat-Fiz Astronom Društvo Mat Fiz Hrvatske Ser II 1958; 13(4): 243–248
[7]
Barczy M, Burai P. Random means generated by random variables: expectation and limit theorems. Results Math 2022; 77(1): 7
[8]
BorweinJ MBorweinP B. Pi and the AGM—A Study in Analytical Number Theory and Computational Complexity. Canad Math Soc Ser Monogr Adv Texts, New York: John Wiley & Sons, 1987
[9]
BullenP S. Handbook of Means and Their Inequalities. Math Appl, Vol 560. Dordrecht: Kluwer Academic Publishers Group, 2003
[10]
Burai P. A Matkowski-Sutô type equation. Publ Math Debrecen 2007; 70(1/2): 233–247
[11]
Burai P, Jarczyk J. Conditional homogeneity and translativity of Makó-Páles means. Ann Univ Sci Budapest Sect Comput 2013; 40: 159–172
[12]
CauchyA-L. Cours d’analyse de l’École Royale Polytechnique. Première partie: Analyse algébrique. Paris: de L'Imprimérie Royale, 1821
[13]
Daróczy Z, Maksa G. On a problem of Matkowski. Colloq Math 1999; 82(1): 117–123
[14]
Daróczy Z, Maksa G, Páles Z. On two-variable means with variable weights. Aequationes Math 2004; 67(1/2): 154–159
[15]
Daróczy Z, Páles Z. Gauss-composition of means and the solution of the Matkowski-Sutô problem. Publ Math Debrecen 2002; 61(1/2): 157–218
[16]
Domsta J, Matkowski J. Invariance of the arithmetic mean with respect to special mean-type mappings. Aequationes Math 2006; 71(1/2): 70–85
[17]
EbertU. Linear inequality concepts and social welfare. Discussion Paper, No DARP/33. London: London School of Economics and Political Science, 1997
[18]
GaussC F. Bestimmung der Anziehung eines elliptischen Ringes. Nachlass zur Theorie des arithmatisch-geometrischen Mittels und der Modulfunktion. Leipzig: Akad Verlagesellschaft, 1927
[19]
Glazowska D. A solution of an open problem concerning Lagrangian mean-type mappings. Cent Eur J Math 2011; 9(5): 1067–1073
[20]
Glazowska D. Some Cauchy mean-type mappings for which the geometric mean is invariant. J Math Anal Appl 2011; 375(2): 418–430
[21]
Glazowska D, Jarczyk J, Jarczyk W. A square iterative roots of some mean-type mappings. J Difference Equ Appl 2018; 24(5): 729–735
[22]
Glazowska D, Jarczyk J, Jarczyk W. Embeddability of pairs of weighted quasi-arithmetic means into a semiflow. Aequationes Math 2020; 94(4): 679–687
[23]
Glazowska D, Matkowski J. An invariance of geometric mean with respect to Lagrangian means. J Math Anal Appl 2007; 331(2): 1187–1199
[24]
Grünwald R, Páles Z. On the equality problem of generalized Bajraktarević means. Aequationes Math 2020; 94(4): 651–677
[25]
Grünwald R, Páles Z. On the invariance of the arithmetic mean with respect to generalized Bajraktarević means. Acta Math Hungar 2022; 166(2): 594–613
[26]
HardyG HLittlewoodJ EPólyaG. Inequalities, 2nd ed. Cambridge: Cambridge University Press, 1952
[27]
Hilbert D. Mathematical problems. Bull Amer Math Soc 1902; 8(10): 437–479
[28]
Járai A, Ng C T, Zhang W N. A functional equation involving three means. Rocznik Nauk-Dydakt Prace Mat 2000; 2000(17): 117–123
[29]
Jarczyk J. Invariance of weighted quasi-arithmetic means with continuous generators. Publ Math Debrecen 2007; 71(3/4): 279–294
[30]
Jarczyk J. Invariance of quasi-arithmetic means with function weights. J Math Anal Appl 2009; 353(1): 134–140
[31]
Jarczyk J. Invariance in a class of Bajraktarević means. Nonlinear Anal 2010; 72(5): 2608–2619
[32]
Jarczyk J. Parametrized means and limit properties of their Gaussian iterations. Appl Math Comput 2015; 261: 81–89
[33]
Jarczyk J, Jarczyk W. Invariance of means. Aequationes Math 2018; 92(5): 801–872
[34]
Jarczyk J, Jarczyk W. On a functional equation appearing on the margins of a mean invariance problem. Ann Math Sil 2020; 34(1): 96–103
[35]
Jarczyk J, Jarczyk W. Gaussian iterative algorithm and integrated automorphism equation for random means. Discrete Contin Dyn Syst 2020; 40(12): 6837–6844
[36]
Jarczyk W, Matkowski J. Embeddability of mean-type mappings in a continuous iteration semigroup. Nonlinear Anal 2010; 72(5): 2580–2591
[37]
Kiss T, Páles Z. On a functional equation related to two-variable weighted quasi-arithmetic means. J Difference Equ Appl 2018; 24(1): 107–126
[38]
Kiss T, Páles Z. On a functional equation related to two-variable Cauchy means. Math Inequal Appl 2019; 22(4): 1099–1122
[39]
Kolm S-C. Unequal inequalities, I. J Econom Theory 1976; 12(3): 416–442
[40]
Leach E B, Sholander M C. Multivariable extended mean values. J Math Anal Appl 1984; 104(2): 390–407
[41]
Li L, Matkowski J, Zhang Q. Square iterative roots of generalized weighted quasi-arithmetic mean-type mappings. Acta Math Hungar 2021; 163(1): 149–167
[42]
Liu L, Matkowski J. Iterative functional equations and means. J Difference Equ Appl 2018; 24(5): 797–811
[43]
Losonczi L. Equality of two variable weighted means: reduction to differential equations. Aequationes Math 1999; 58(3): 223–241
[44]
Losonczi L. Equality of Cauchy mean values. Publ Math Debrecen 2000; 57(1/2): 217–230
[45]
Losonczi L. Equality of two variable Cauchy mean values. Aequationes Math 2003; 65(1/2): 61–81
[46]
Losonczi L, Páles Z. Comparison of means generated by two functions and a measure. J Math Anal Appl 2008; 345(1): 135–146
[47]
Losonczi L, Páles Z. Equality of two-variable functional means generated by different measures. Aequationes Math 2011; 81(1/2): 31–53
[48]
Losonczi L, Páles Z, Zakaria A. On the equality of two-variable general functional means. Aequationes Math 2021; 95(6): 1011–1036
[49]
Lovas R L, Páles Z, Zakaria A. Characterization of the equality of Cauchy means to quasiarithmetic means. J Math Anal Appl 2020; 484(1): 123700
[50]
Makó Z, Páles Z. On the equality of generalized quasi-arithmetic means. Publ Math Debrecen 2008; 72(3/4): 407–440
[51]
Makó Z, Páles Z. The invariance of the arithmetic mean with respect to generalized quasi-arithmetic means. J Math Anal Appl 2009; 353(1): 8–23
[52]
Matkowski J. Invariant and complementary quasi-arithmetic means. Aequationes Math 1999; 57(1): 87107
[53]
Matkowski J. Solution of a regularity problem in equality of Cauchy means. Publ Math Debrecen 2004; 64(3/4): 391–400
[54]
Matkowski J. Lagrangian mean-type mappings for which the arithmetic mean is invariant. J Math Anal Appl 2005; 309(1): 15–24
[55]
MatkowskiJ. Iterations of the mean-type mappings. In: Iteration Theory, Grazer Math Ber, Vol 354. Graz: Institut für Mathematik, Karl-Franzens-Universität Graz, 2009, 158–179
[56]
Matkowski J. Invariance of a quasi-arithmetic mean with respect to a system of generalized Bajraktarević means. Appl Math Lett 2012; 25(11): 1651–1655
[57]
Matkowski J. Invariance of Bajraktarevič mean with respect to quasi arithmetic means. Publ Math Debrecen 2012; 80(3/4): 441–455
[58]
MatkowskiJ. On means which are quasi-arithmetic and of the Beckenbach-Gini type. In: Functional Equations in Mathematical Analysis. Springer Optim, Appl, Vol 52. New York: Springer, 2012, 583–597
[59]
Matkowski J. Invariance of the Bajraktarević means with respect to the Beckenbach-Gini means. Math Slovaca 2013; 63(3): 493–502
[60]
Matkowski J. Explicit forms of invariant means: complementary results to Gauss (A, G)-theorem and some applications. Aequationes Math 2023; 97(5/6): 919–934
[61]
Matkowski J, Nowicka M, Witkowski A. Explicit solutions of the invariance equation for means. Results Math 2017; 71(1/2): 397–410
[62]
Páles Z. Problems in the regularity theory of functional equations. Aequationes Math 2002; 63(1/2): 1–17
[63]
Páles Z, Pasteczka P. Decision making via generalized Bajraktarević means. Ann Oper Res 2024; 332(1/2/3): 461–480
[64]
Páles Z, Zakaria A. On the local and global comparison of generalized Bajraktarević means. J Math Anal Appl 2017; 455(1): 792–815
[65]
Páles Z, Zakaria A. On the invariance equation for two-variable weighted nonsymmetric Bajraktarević means. Aequationes Math 2019; 93(1): 37–57
[66]
Páles Z, Zakaria A. Equality and homogeneity of generalized integral means. Acta Math Hungar 2020; 160(2): 412–443
[67]
Páles Z, Zakaria A. On the equality of Bajraktarević means to quasi-arithmetic means. Results Math 2020; 75(1): 19
[68]
Páles Z, Zakaria A. Characterizations of the equality of two-variable generalized quasiarithmetic means. J Math Anal Appl 2022; 507(2): 125813
[69]
Páles Z, Zakaria A. On the equality problem of two-variable Bajraktarević means under first-order differentiability assumptions. Aequationes Math 2023; 97(2): 279–294
[70]
Sutô O. Studies on some functional equations. Tohoku Math J 1914; 6: 1–15
[71]
Toader G. Some mean values related to the arithmetic-geometric mean. J Math Anal Appl 1998; 218(2): 358–368
[72]
ToaderGCostinI. Means in Mathematical Analysis—Bivariate Means. Math Analysis Appl, London: Academic Press, 2018
[73]
Toader S, Rassias T M, Toader G. A Gauss type functional equation. Int J Math Math Sci 2001; 25(9): 565–569
[74]
XuJ PZhouX Y. Fuzzy-like Multiple Objective Decision Making. Stud Fuzziness Soft Comput, Vol 263. Berlin: Springer-Verlag, 2011
[75]
Zhang Q, Li L. On the invariance of generalized quasiarithmetic means. J Appl Anal Comput 2023; 13(3): 1581–1596
[76]
Zhang Q, Xu B. An invariance of geometric mean with respect to generalized quasi-arithmetic means. J Math Anal Appl 2011; 379(1): 65–74
[77]
Zhang Q, Xu B. On some invariance of the quotient mean with respect to Makó-Páles means. Aequationes Math 2017; 91(6): 1147–1156
[78]
Zhang Q, Xu B, Han M A. Optimal bounds for Toader mean in terms of general means. J Inequal Appl 2020; (Paper No. 118):
[79]
Zhang Q, Xu B, Han M A. Some Cauchy mean-type mappings for which the arithmetic mean is invariant. Aequationes Math 2021; 95(1): 13–34

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(972 KB)

Accesses

Citations

Detail

Sections
Recommended

/