Partial-dual Euler-genus polynomials for two classes of bouquets
Kefu ZHU , Qi YAN
Front. Math. China ›› 2024, Vol. 19 ›› Issue (5) : 299 -315.
Partial-dual Euler-genus polynomials for two classes of bouquets
[European J. Combin., 2020, 86: Paper No. 103084, 20 pp.] introduced the concept of partial-dual Euler-genus polynomial in the ribbon graphs and gave the interpolation conjecture. That is, the partial-dual Euler-genus polynomial for any non-orientable ribbon graph is interpolating. In fact, [European J. Combin., 2022, 102: Paper No. 103493, 7 pp.] gave two classes of counterexamples to deny the conjecture, and only one or two of the side loops contained in the two classes of bouquets were non-orientable. On the basis of [European J. Combin., 2022, 102: Paper No. 103493, 7 pp.], we further calculate the partial-dual Euler-genus polynomials of two other classes of bouquets. One is non-interpolating, whose side loop has an arbitrary number of non-orientable loops. The other is interpolating, whose side loop has an arbitrary number of both non-orientable loops and orientable loops.
Ribbon graph / partial-dual / genus / polynomial / interpolating
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
Higher Education Press 2024
/
| 〈 |
|
〉 |