Harmonic extension of Q-type space related to logarithmic functions
Jie CUI, Pengtao LI
Harmonic extension of Q-type space related to logarithmic functions
This paper studies a class of Q-type spaces related to logarithmic functions. We first investigate some basic properties of . Further, by the aid of Poisson integral and harmonic function spaces , the harmonic extension of and the boundary value problem of are obtained.
Q type space / Poisson integral / harmonic extension
[1] |
Aulaskari R, Xiao J, Zhao R H. On subspaces and subsets of BMOA and UBC. Analysis 1995; 15(2): 101–121
|
[2] |
BaoG L. Characterizations of Qk spaces of several real variables. Ph D Thesis, Shantou: Shantou University, 2014 (in Chinese)
|
[3] |
Cobos F, Dominguez Ó, Triebel H. Characterizations of logarithmic Besov spaces in terms of differences, Fourier-analytical decompositions, wavelets and semi-Groups. J Funct Anal 2016; 270(12): 4386–4425
|
[4] |
Dafni G, Xiao J. Some new tent spaces and duality theorems for fractional Carleson measures and Qα(Rn). J Funct Anal 2004; 208(2): 377–422
|
[5] |
Essén M, Janson S, Peng L Z, Xiao J. Q spaces of several real variables. Indiana Univ Math J 2000; 49(2): 575–615
|
[6] |
Koskela P, Xiao J, Zhang Y R-Y, Zhou Y. A quasiconformal composition problem for the Q-spaces. J Eur Math Soc (JEMS) 2017; 19(4): 1159–1187
|
[7] |
KufnerAPerssonL-E. Weighted Inequalities of Hardy Type. River Edge, NJ: World Scientific, 2003
|
[8] |
Li P T, Yang Q X, Zhao K. Regular wavelets and Triebel-Lizorkin type oscillation spaces. Math Methods Appl Sci 2017; 40(18): 6684–6701
|
[9] |
Li P T, Zhai Z C. Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces. J Funct Anal 2009; 259(10): 2457–2519
|
[10] |
Li P T, Zhai Z C. Riesz transforms on Q-type spaces with application to quasi-geostrophic equation. Taiwanese J Math 2012; 16(6): 2107–2132
|
[11] |
Liu L G, Wu S Q, Xiao J, Yuan W. The logarithmic Sobolev capacity. Adv Math 2021; 392: 107993
|
[12] |
Stegenga D A. Multipliers of the Dirichlet space. Illinois J Math 1980; 24(1): 113–139
|
[13] |
TrefethenL NBauD. III, Numerical Linear Algebra. Philadelphia, PA: SIAM, 1997
|
[14] |
Wu Z J, Xie C P. Q spaces and Morrey spaces. J Funct Anal 2003; 201(1): 282–297
|
[15] |
Xiao J. Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn Partial Differ Equ 2007; 4(3): 227–245
|
[16] |
Yang Q X, Qian T, Li P T. Fefferman-Stein decomposition for Q-spaces and micro-local quantities. Nonlinear Anal 2016; 145: 24–48
|
/
〈 | 〉 |