Harmonic extension of Q-type space related to logarithmic functions

Jie CUI , Pengtao LI

Front. Math. China ›› 2024, Vol. 19 ›› Issue (5) : 277 -297.

PDF (680KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (5) : 277 -297. DOI: 10.3868/s140-DDD-024-0017-x
RESEARCH ARTICLE

Harmonic extension of Q-type space related to logarithmic functions

Author information +
History +
PDF (680KB)

Abstract

This paper studies a class of Q-type spaces Qlog,λm(Rn)related to logarithmic functions. We first investigate some basic properties of Qlog,λm(Rn). Further, by the aid of Poisson integral and harmonic function spaces Hlog,λm(R+n+1), the harmonic extension of Qlog,λm(Rn)and the boundary value problem of Hlog,λm(R+n+1)are obtained.

Keywords

Q type space / Poisson integral / harmonic extension

Cite this article

Download citation ▾
Jie CUI, Pengtao LI. Harmonic extension of Q-type space related to logarithmic functions. Front. Math. China, 2024, 19(5): 277-297 DOI:10.3868/s140-DDD-024-0017-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aulaskari R, Xiao J, Zhao R H. On subspaces and subsets of BMOA and UBC. Analysis 1995; 15(2): 101–121

[2]

BaoG L. Characterizations of Qk spaces of several real variables. Ph D Thesis, Shantou: Shantou University, 2014 (in Chinese)

[3]

Cobos F, Dominguez Ó, Triebel H. Characterizations of logarithmic Besov spaces in terms of differences, Fourier-analytical decompositions, wavelets and semi-Groups. J Funct Anal 2016; 270(12): 4386–4425

[4]

Dafni G, Xiao J. Some new tent spaces and duality theorems for fractional Carleson measures and Qα(Rn). J Funct Anal 2004; 208(2): 377–422

[5]

Essén M, Janson S, Peng L Z, Xiao J. Q spaces of several real variables. Indiana Univ Math J 2000; 49(2): 575–615

[6]

Koskela P, Xiao J, Zhang Y R-Y, Zhou Y. A quasiconformal composition problem for the Q-spaces. J Eur Math Soc (JEMS) 2017; 19(4): 1159–1187

[7]

KufnerAPerssonL-E. Weighted Inequalities of Hardy Type. River Edge, NJ: World Scientific, 2003

[8]

Li P T, Yang Q X, Zhao K. Regular wavelets and Triebel-Lizorkin type oscillation spaces. Math Methods Appl Sci 2017; 40(18): 6684–6701

[9]

Li P T, Zhai Z C. Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces. J Funct Anal 2009; 259(10): 2457–2519

[10]

Li P T, Zhai Z C. Riesz transforms on Q-type spaces with application to quasi-geostrophic equation. Taiwanese J Math 2012; 16(6): 2107–2132

[11]

Liu L G, Wu S Q, Xiao J, Yuan W. The logarithmic Sobolev capacity. Adv Math 2021; 392: 107993

[12]

Stegenga D A. Multipliers of the Dirichlet space. Illinois J Math 1980; 24(1): 113–139

[13]

TrefethenL NBauD. III, Numerical Linear Algebra. Philadelphia, PA: SIAM, 1997

[14]

Wu Z J, Xie C P. Q spaces and Morrey spaces. J Funct Anal 2003; 201(1): 282–297

[15]

Xiao J. Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn Partial Differ Equ 2007; 4(3): 227–245

[16]

Yang Q X, Qian T, Li P T. Fefferman-Stein decomposition for Q-spaces and micro-local quantities. Nonlinear Anal 2016; 145: 24–48

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (680KB)

333

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/