The q-log-concavity of q-ballot numbers

Xinmiao LIU , Jiangxia HOU , Fengxia LIU

Front. Math. China ›› 2024, Vol. 19 ›› Issue (5) : 247 -254.

PDF (827KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (5) : 247 -254. DOI: 10.3868/s140-DDD-024-0015-x
RESEARCH ARTICLE

The q-log-concavity of q-ballot numbers

Author information +
History +
PDF (827KB)

Abstract

Carlitz and Riordan introduced the q-analogue fq(n,k) of ballot numbers. In this paper, using the combinatorial interpretation of fq(n,k) and constructing injections, we prove that fq(n,k) is q-log-concave with respect to n and k, i.e., all coefficients of the polynomials fq(n,k)2fq(n+1,k)fq(n1,k) and fq(n,k)2fq(n,k+1)fq(n,k1) are non-negative for 0<k<n.

Graphical abstract

Keywords

q-log-concavity / q-ballot number / lattice path / inversion

Cite this article

Download citation ▾
Xinmiao LIU, Jiangxia HOU, Fengxia LIU. The q-log-concavity of q-ballot numbers. Front. Math. China, 2024, 19(5): 247-254 DOI:10.3868/s140-DDD-024-0015-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Butler L M. The q-log-concavity of q-binomial coefficients. J Combin Theory Ser A 1990; 54(1): 54–63

[2]

Carlitz L. Sequences, paths, ballot numbers. Fibonacci Quart 1972; 10(5): 531–549

[3]

Carlitz L, Riordan J. Two element lattice permutation numbers and their q-generalization. Duke Math J 1964; 31(3): 371–388

[4]

Chapoton F, Zeng J. A curious polynomial interpolation of Carlitz–Riordan’s q-ballot numbers. Contrib Discrete Math 2015; 10(1): 99–112

[5]

Chen W Y C, Wang L X W, Yang A L B. Schur positivity and the q-log-convexity of the Narayana polynomials. J Algebraic Combin 2010; 32(3): 303–338

[6]

ComtetL. Advanced Combinatorics. Dordrecht: D Reidel, 1974

[7]

Ji K Q. The q-log-concavity and unimodality of q-Kaplansky numbers. Discrete Math 2022; 345(6): 112821

[8]

Sagan B E. Log concave sequences of symmetric functions and analogs of the Jacobi–Trudi determinants. Trans Amer Math Soc 1992; 329(2): 795–811

[9]

Sagan B E. Inductive proofs of q-log concavity. Discrete Math 1992; 99(1/2/3): 298–306

[10]

Spiro S. Ballot permutations and odd order permutations. Discrete Math 2020; 343(6): 111869

[11]

StanleyR P. Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In: Graph Theory and Its Applications: East and West (Jinan, 1986), Annals of the New York Academy of Sciences, Vol 576. New York: New York Acad Sci, 1989, 500–535

[12]

Wang D G L, Zhang J J R. A Toeplitz property of ballot permutations and odd order permutations. Electron J Combin 2022; 27(2): 2.55

[13]

Wang D G L, Zhao T Y. The peak and descent statistics over ballot permutations. Discrete Math 2022; 345(3): 112739

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (827KB)

453

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/