Turán number of Berge linear forests in uniform hypergraphs

Liying KANG, Jiawei HUANG, Yisai XUE, Zhiwei WU

PDF(495 KB)
PDF(495 KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 25-35. DOI: 10.3868/s140-DDD-024-0005-x
RESEARCH ARTICLE

Turán number of Berge linear forests in uniform hypergraphs

Author information +
History +

Abstract

Let F be a graph and H be a hypergraph. We say that H contains a Berge-F If there exists a bijection φ: E(F)→E(H) such that for eE(F), eφ(e), and the Turán number of Berge-F is defined to be the maximum number of edges in an r-uniform hypergraph of order n that is Berge-F-free, denoted by exr(n, Berge-F). A linear forest is a graph whose connected components are all paths or isolated vertices. Let Ln,k be the family of all linear forests of n vertices with k edges. In this paper, Turán number of Berge-Ln,k in an r-uniform hypergraph is studied. When rk +1 and 3 rk121, we determine the exact value of exr(n, Berge-Ln,k) respectively. When k12rk, we determine the upper bound of exr(n, Berge-Ln,k).

Keywords

Uniform hypergraph / Berge hypergraph / linear forest / Turán number

Cite this article

Download citation ▾
Liying KANG, Jiawei HUANG, Yisai XUE, Zhiwei WU. Turán number of Berge linear forests in uniform hypergraphs. Front. Math. China, 2024, 19(1): 25‒35 https://doi.org/10.3868/s140-DDD-024-0005-x

References

[1]
Bondy J A, Chvátal V. A method in graph theory. Discrete Math 1976; 15(2): 111–135
[2]
Füredi Z, Kostochka A, Luo R. Avoiding long Berge cycles. J Combin Theory Ser B 2019; 137: 55–64
[3]
Gerbner D, Methuku C. General lemmas for Berge-Turan hypergraph problems. European J Combin 2020; 86: 103082
[4]
Gerbner D, Methuku A, Vizer M. Asymptotics for the Turán number of Berge-K2, t. Combin Theory Ser B 2019; 137: 264–290
[5]
Gerbner D, Palmer C. Extremal results for Berge hypergraphs. SIAM J Discrete Math 2017; 31(4): 2314–2327
[6]
Gyárfás A. The Turán number of Berge-K4 in triple systems. SIAM J Discrete Math 2019; 33(1): 383–392
[7]
Györi E. Triangle-free hypergraphs. Combin Probab Comput 2006; 15(1/2): 185–191
[8]
Györi E, Katona G Y, Lemons N. Hypergraph extensions of the Erdös-Gallai theorem. European J Combin 2016; 58: 238–246
[9]
Györi E, Lemons N. Hypergraphs with no cycle of a given length. Combin Probab Comput 2012; 21(1/2): 193–201
[10]
Kang L Y, Ni Z Y, Shan E F. Turán number of Berge matchings in uniform hypergraphs. Discrete Math 2022; 345(8): 112901
[11]
Khormali O, Palmer C. Turán numbers for hypergraph star forests. European J Combin 2022; 102: 103506
[12]
Lazebnik F, Verstraëte J. On hypergraphs of girth five. Electron J Combin 2003; 10: R25
[13]
Ning B, Wang J. The formula for Turan number of spanning linear forests. Discrete Math 2020; 343(8): 111924
[14]
Zhang L P, Wang L G, Zhou J L. The generalized Turán number of spanning linear forests. Graphs Combin 2022; 38(2): 40
[15]
Zhu H, Kang L Y, Ni Z Y, Shan E F. The Turán number of Berge-K4 in 3-uniform hypergraphs. SIAM J Discrete Math 2020; 34(3): 1485–1492

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(495 KB)

Accesses

Citations

Detail

Sections
Recommended

/