Turán number of Berge linear forests in uniform hypergraphs

Liying KANG , Jiawei HUANG , Yisai XUE , Zhiwei WU

Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 25 -35.

PDF (495KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 25 -35. DOI: 10.3868/s140-DDD-024-0005-x
RESEARCH ARTICLE

Turán number of Berge linear forests in uniform hypergraphs

Author information +
History +
PDF (495KB)

Abstract

Let F be a graph and H be a hypergraph. We say that H contains a Berge-F If there exists a bijection φ: E(F)→E(H) such that for eE(F), eφ(e), and the Turán number of Berge-F is defined to be the maximum number of edges in an r-uniform hypergraph of order n that is Berge-F-free, denoted by exr(n, Berge-F). A linear forest is a graph whose connected components are all paths or isolated vertices. Let Ln,k be the family of all linear forests of n vertices with k edges. In this paper, Turán number of Berge-Ln,k in an r-uniform hypergraph is studied. When rk +1 and 3 rk121, we determine the exact value of exr(n, Berge-Ln,k) respectively. When k12rk, we determine the upper bound of exr(n, Berge-Ln,k).

Keywords

Uniform hypergraph / Berge hypergraph / linear forest / Turán number

Cite this article

Download citation ▾
Liying KANG, Jiawei HUANG, Yisai XUE, Zhiwei WU. Turán number of Berge linear forests in uniform hypergraphs. Front. Math. China, 2024, 19(1): 25-35 DOI:10.3868/s140-DDD-024-0005-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bondy J A, Chvátal V. A method in graph theory. Discrete Math 1976; 15(2): 111–135

[2]

Füredi Z, Kostochka A, Luo R. Avoiding long Berge cycles. J Combin Theory Ser B 2019; 137: 55–64

[3]

Gerbner D, Methuku C. General lemmas for Berge-Turan hypergraph problems. European J Combin 2020; 86: 103082

[4]

Gerbner D, Methuku A, Vizer M. Asymptotics for the Turán number of Berge-K2, t. Combin Theory Ser B 2019; 137: 264–290

[5]

Gerbner D, Palmer C. Extremal results for Berge hypergraphs. SIAM J Discrete Math 2017; 31(4): 2314–2327

[6]

Gyárfás A. The Turán number of Berge-K4 in triple systems. SIAM J Discrete Math 2019; 33(1): 383–392

[7]

Györi E. Triangle-free hypergraphs. Combin Probab Comput 2006; 15(1/2): 185–191

[8]

Györi E, Katona G Y, Lemons N. Hypergraph extensions of the Erdös-Gallai theorem. European J Combin 2016; 58: 238–246

[9]

Györi E, Lemons N. Hypergraphs with no cycle of a given length. Combin Probab Comput 2012; 21(1/2): 193–201

[10]

Kang L Y, Ni Z Y, Shan E F. Turán number of Berge matchings in uniform hypergraphs. Discrete Math 2022; 345(8): 112901

[11]

Khormali O, Palmer C. Turán numbers for hypergraph star forests. European J Combin 2022; 102: 103506

[12]

Lazebnik F, Verstraëte J. On hypergraphs of girth five. Electron J Combin 2003; 10: R25

[13]

Ning B, Wang J. The formula for Turan number of spanning linear forests. Discrete Math 2020; 343(8): 111924

[14]

Zhang L P, Wang L G, Zhou J L. The generalized Turán number of spanning linear forests. Graphs Combin 2022; 38(2): 40

[15]

Zhu H, Kang L Y, Ni Z Y, Shan E F. The Turán number of Berge-K4 in 3-uniform hypergraphs. SIAM J Discrete Math 2020; 34(3): 1485–1492

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (495KB)

667

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/