Higher order Dirac structure and Nambu-Poisson geometry
Yanhui BI, Jia LI
Higher order Dirac structure and Nambu-Poisson geometry
This paper studies the properties of Nambu-Poisson geometry from the (n−1, k)-Dirac structure on a smooth manifold M. Firstly, we examine the automorphism group and infinitesimal on higher order Courant algebroid, to prove the integrability of infinitesimal Courant automorphism. Under the transversal smooth morphism and anchor mapping of M on (n−1, k)-Dirac structure, it’s holds that the pullback (n−1, k)-Dirac structure on M turns out an (n−1, k)-Dirac structure on N. Then, given that the graph of Nambu-Poisson structure takes the form of (n−1, n−2)-Dirac structure, it follows that the single parameter variety of Nambu-Poisson structure is related to one variety closed n-symplectic form under gauge transformation. When is taken as the immersion mapping of (n−1)-cosymplectic submanifold, the pullback Nambu-Poisson structure on M turns out the Nambu-Poisson structure on N. Finally, we discuss the (n−1, 0)-Dirac structure on M can be integrated into a problem of (n−1)-presymplectic groupoid. Under the mapping : , the corresponding (n−1, 0)-Dirac structure is F and E respectively. If E can be integrated into (n−1)-presymplectic groupoid , then there exists the only , such that the corresponding integral of F is (n−1)-presymplectic groupoid .
Nambu-Poisson structure / n-symplectic structure / (n−1, k)-Dirac structure / integrability
[1] |
AlbaN M. On higher Poisson and higher Dirac structures. Ph D Thesis, Rio de Janeiro: Institute Nacional de Matematica Pura e Aplicada, 2015
|
[2] |
Álvarez D. Integrability of quotients in Poisson and Dirac geometry. Pacific J Math 2021; 311(1): 1–32
|
[3] |
Bi Y H. Sheng Y H. On higher analogues of Courant algebroids. Sci China Math 2011; 54(3): 437447
|
[4] |
Bi Y H. Sheng Y H. Dirac structures for higher analogues of Courant algebroids. Int J Geom Methods Mod Phys 2015; 12(1): 1550010
|
[5] |
Bi Y H, Vitagliano L, Zhang T. Higher omni-Lie algebroids. J Lie Theory 2019; 29(3): 881–899
|
[6] |
BursztynHCabreraAIglesias-PonteD. Multisymplectic geometry and Lie groupoids. In: Geometry, Mechanics, and Dynamics, Fields Inst Commun, Vol 73. New York: Springer, 2015, 57–73
|
[7] |
BursztynHIglesias-PonteDLuJ H. Dirac geometry and integration of Poisson homogeneous spaces. 2021, arXiv: 1905.11453
|
[8] |
Bursztyn H, Martinez Alba N, Rubio R. On higher Dirac structures. Int Math Res Not IMRN 2019; 2019(5): 1503–1542
|
[9] |
Cantrijn F, Ibort A, de Leon M. On the geometry of multisymplectic manifolds. J Austral Math Soc Ser A 1999; 66(3): 303–330
|
[10] |
Courant T J. Dirac manifolds. Trans Amer Math Soc 1990; 319(2): 631–661
|
[11] |
CourantT JWeinsteinA. Beyond Poisson structures. In: Troisième Théorème de Lie, Travaux en Cours, Vol 27. Paris: Hermann, 1988, 39–49 (in French)
|
[12] |
Gualtieri M. Generalized complex geometry. Ann of Math (2) 2011; 174(1): 75–123
|
[13] |
Hitchin N. Generalized Calabi-Yau manifolds. Q J Math 2003; 54(3): 281–308
|
[14] |
Ibáñez R, de León M, Lopez B, Marrero J C, Padrón E. Duality and modular class of a Nambu-Poisson structure. J Phys A 2001; 34(17): 3623–3650
|
[15] |
Ibáñez R, de León M, Marrero J C, Martín de Diego D. Dynamics of generalized Poisson and Nambu-Poisson brackets. J Math Phys 1997; 38(5): 2332–2344
|
[16] |
Lang H L, Sheng Y H. Linearization of the higher analogue of Courant algebroids. J Geom Meeh 2020; 12(4): 585–606
|
[17] |
Liu Z J, Weinstein A, Xu P. Manin triples for Lie bialgebroids. J Differential Geom 1997; 45(3): 547–574
|
[18] |
Meinrenken E. Poisson geometry from a Dirac perspective. Lett Math Phys 2018; 10(3): 447–498
|
[19] |
Nakanishi N. On Nambu-Poisson manifolds. Rev Math Phys 1998; 10(4): 499–510
|
[20] |
Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D (3) 1973; 7: 2405–2412
|
[21] |
RoytenbergD. Courant algebroids, derived brackets and even symplectic supermanifolds. Ph D Thesis, Berkeley: University of California, 1999
|
[22] |
Sheng Y H, Zhu C C. Poisson geometry and Lie n-algebras. Sci Sin Math 2017; 47: 1717–1734
|
[23] |
Ševera P, Weinstein A. Poisson geometry with a 3-form background. Progr Theoret Phys Suppl 2001; 2001(144): 145–154
|
[24] |
Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys 1994; 160(2): 295–315
|
[25] |
Vaisman I. A survey on Nambu-Poisson brackets. Acta Math Univ Comenian (N S) 1999; 68(2): 213–241
|
[26] |
Vallejo J A. Nambu-Poisson manifolds and associated n-ary Lie algebroids. J Phys A 2001; 34(13): 2867–2881
|
[27] |
Zambon M. L∞-algebras and higher analogues of Dirac structures and Courant algebroids. J Symplectic Geom 2012; 10(4): 563–599
|
/
〈 | 〉 |