Higher order Dirac structure and Nambu-Poisson geometry

Yanhui BI, Jia LI

PDF(716 KB)
PDF(716 KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 37-56. DOI: 10.3868/s140-DDD-024-0004-x
RESEARCH ARTICLE

Higher order Dirac structure and Nambu-Poisson geometry

Author information +
History +

Abstract

This paper studies the properties of Nambu-Poisson geometry from the (n−1, k)-Dirac structure on a smooth manifold M. Firstly, we examine the automorphism group and infinitesimal on higher order Courant algebroid, to prove the integrability of infinitesimal Courant automorphism. Under the transversal smooth morphism ϕ:NM and anchor mapping of M on (n−1, k)-Dirac structure, it’s holds that the pullback (n−1, k)-Dirac structure on M turns out an (n−1, k)-Dirac structure on N. Then, given that the graph of Nambu-Poisson structure takes the form of (n−1, n−2)-Dirac structure, it follows that the single parameter variety of Nambu-Poisson structure is related to one variety closed n-symplectic form under gauge transformation. When ϕ:NMis taken as the immersion mapping of (n−1)-cosymplectic submanifold, the pullback Nambu-Poisson structure on M turns out the Nambu-Poisson structure on N. Finally, we discuss the (n−1, 0)-Dirac structure on M can be integrated into a problem of (n−1)-presymplectic groupoid. Under the mapping Π: MM/H, the corresponding (n−1, 0)-Dirac structure is F and E respectively. If E can be integrated into (n−1)-presymplectic groupoid (g,Ω), then there exists the only ω¯, such that the corresponding integral of F is (n−1)-presymplectic groupoid (g,¯ω¯).

Keywords

Nambu-Poisson structure / n-symplectic structure / (n−1, k)-Dirac structure / integrability

Cite this article

Download citation ▾
Yanhui BI, Jia LI. Higher order Dirac structure and Nambu-Poisson geometry. Front. Math. China, 2024, 19(1): 37‒56 https://doi.org/10.3868/s140-DDD-024-0004-x

References

[1]
AlbaN M. On higher Poisson and higher Dirac structures. Ph D Thesis, Rio de Janeiro: Institute Nacional de Matematica Pura e Aplicada, 2015
[2]
Álvarez D. Integrability of quotients in Poisson and Dirac geometry. Pacific J Math 2021; 311(1): 1–32
[3]
Bi Y H. Sheng Y H. On higher analogues of Courant algebroids. Sci China Math 2011; 54(3): 437447
[4]
Bi Y H. Sheng Y H. Dirac structures for higher analogues of Courant algebroids. Int J Geom Methods Mod Phys 2015; 12(1): 1550010
[5]
Bi Y H, Vitagliano L, Zhang T. Higher omni-Lie algebroids. J Lie Theory 2019; 29(3): 881–899
[6]
BursztynHCabreraAIglesias-PonteD. Multisymplectic geometry and Lie groupoids. In: Geometry, Mechanics, and Dynamics, Fields Inst Commun, Vol 73. New York: Springer, 2015, 57–73
[7]
BursztynHIglesias-PonteDLuJ H. Dirac geometry and integration of Poisson homogeneous spaces. 2021, arXiv: 1905.11453
[8]
Bursztyn H, Martinez Alba N, Rubio R. On higher Dirac structures. Int Math Res Not IMRN 2019; 2019(5): 1503–1542
[9]
Cantrijn F, Ibort A, de Leon M. On the geometry of multisymplectic manifolds. J Austral Math Soc Ser A 1999; 66(3): 303–330
[10]
Courant T J. Dirac manifolds. Trans Amer Math Soc 1990; 319(2): 631–661
[11]
CourantT JWeinsteinA. Beyond Poisson structures. In: Troisième Théorème de Lie, Travaux en Cours, Vol 27. Paris: Hermann, 1988, 39–49 (in French)
[12]
Gualtieri M. Generalized complex geometry. Ann of Math (2) 2011; 174(1): 75–123
[13]
Hitchin N. Generalized Calabi-Yau manifolds. Q J Math 2003; 54(3): 281–308
[14]
Ibáñez R, de León M, Lopez B, Marrero J C, Padrón E. Duality and modular class of a Nambu-Poisson structure. J Phys A 2001; 34(17): 3623–3650
[15]
Ibáñez R, de León M, Marrero J C, Martín de Diego D. Dynamics of generalized Poisson and Nambu-Poisson brackets. J Math Phys 1997; 38(5): 2332–2344
[16]
Lang H L, Sheng Y H. Linearization of the higher analogue of Courant algebroids. J Geom Meeh 2020; 12(4): 585–606
[17]
Liu Z J, Weinstein A, Xu P. Manin triples for Lie bialgebroids. J Differential Geom 1997; 45(3): 547–574
[18]
Meinrenken E. Poisson geometry from a Dirac perspective. Lett Math Phys 2018; 10(3): 447–498
[19]
Nakanishi N. On Nambu-Poisson manifolds. Rev Math Phys 1998; 10(4): 499–510
[20]
Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D (3) 1973; 7: 2405–2412
[21]
RoytenbergD. Courant algebroids, derived brackets and even symplectic supermanifolds. Ph D Thesis, Berkeley: University of California, 1999
[22]
Sheng Y H, Zhu C C. Poisson geometry and Lie n-algebras. Sci Sin Math 2017; 47: 1717–1734
[23]
Ševera P, Weinstein A. Poisson geometry with a 3-form background. Progr Theoret Phys Suppl 2001; 2001(144): 145–154
[24]
Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys 1994; 160(2): 295–315
[25]
Vaisman I. A survey on Nambu-Poisson brackets. Acta Math Univ Comenian (N S) 1999; 68(2): 213–241
[26]
Vallejo J A. Nambu-Poisson manifolds and associated n-ary Lie algebroids. J Phys A 2001; 34(13): 2867–2881
[27]
Zambon M. L-algebras and higher analogues of Dirac structures and Courant algebroids. J Symplectic Geom 2012; 10(4): 563–599

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(716 KB)

Accesses

Citations

Detail

Sections
Recommended

/