Higher order Dirac structure and Nambu-Poisson geometry

Yanhui BI , Jia LI

Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 37 -56.

PDF (716KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 37 -56. DOI: 10.3868/s140-DDD-024-0004-x
RESEARCH ARTICLE

Higher order Dirac structure and Nambu-Poisson geometry

Author information +
History +
PDF (716KB)

Abstract

This paper studies the properties of Nambu-Poisson geometry from the (n−1, k)-Dirac structure on a smooth manifold M. Firstly, we examine the automorphism group and infinitesimal on higher order Courant algebroid, to prove the integrability of infinitesimal Courant automorphism. Under the transversal smooth morphism ϕ:NM and anchor mapping of M on (n−1, k)-Dirac structure, it’s holds that the pullback (n−1, k)-Dirac structure on M turns out an (n−1, k)-Dirac structure on N. Then, given that the graph of Nambu-Poisson structure takes the form of (n−1, n−2)-Dirac structure, it follows that the single parameter variety of Nambu-Poisson structure is related to one variety closed n-symplectic form under gauge transformation. When ϕ:NMis taken as the immersion mapping of (n−1)-cosymplectic submanifold, the pullback Nambu-Poisson structure on M turns out the Nambu-Poisson structure on N. Finally, we discuss the (n−1, 0)-Dirac structure on M can be integrated into a problem of (n−1)-presymplectic groupoid. Under the mapping Π: MM/H, the corresponding (n−1, 0)-Dirac structure is F and E respectively. If E can be integrated into (n−1)-presymplectic groupoid (g,Ω), then there exists the only ω¯, such that the corresponding integral of F is (n−1)-presymplectic groupoid (g,¯ω¯).

Keywords

Nambu-Poisson structure / n-symplectic structure / (n−1, k)-Dirac structure / integrability

Cite this article

Download citation ▾
Yanhui BI, Jia LI. Higher order Dirac structure and Nambu-Poisson geometry. Front. Math. China, 2024, 19(1): 37-56 DOI:10.3868/s140-DDD-024-0004-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlbaN M. On higher Poisson and higher Dirac structures. Ph D Thesis, Rio de Janeiro: Institute Nacional de Matematica Pura e Aplicada, 2015

[2]

Álvarez D. Integrability of quotients in Poisson and Dirac geometry. Pacific J Math 2021; 311(1): 1–32

[3]

Bi Y H. Sheng Y H. On higher analogues of Courant algebroids. Sci China Math 2011; 54(3): 437447

[4]

Bi Y H. Sheng Y H. Dirac structures for higher analogues of Courant algebroids. Int J Geom Methods Mod Phys 2015; 12(1): 1550010

[5]

Bi Y H, Vitagliano L, Zhang T. Higher omni-Lie algebroids. J Lie Theory 2019; 29(3): 881–899

[6]

BursztynHCabreraAIglesias-PonteD. Multisymplectic geometry and Lie groupoids. In: Geometry, Mechanics, and Dynamics, Fields Inst Commun, Vol 73. New York: Springer, 2015, 57–73

[7]

BursztynHIglesias-PonteDLuJ H. Dirac geometry and integration of Poisson homogeneous spaces. 2021, arXiv: 1905.11453

[8]

Bursztyn H, Martinez Alba N, Rubio R. On higher Dirac structures. Int Math Res Not IMRN 2019; 2019(5): 1503–1542

[9]

Cantrijn F, Ibort A, de Leon M. On the geometry of multisymplectic manifolds. J Austral Math Soc Ser A 1999; 66(3): 303–330

[10]

Courant T J. Dirac manifolds. Trans Amer Math Soc 1990; 319(2): 631–661

[11]

CourantT JWeinsteinA. Beyond Poisson structures. In: Troisième Théorème de Lie, Travaux en Cours, Vol 27. Paris: Hermann, 1988, 39–49 (in French)

[12]

Gualtieri M. Generalized complex geometry. Ann of Math (2) 2011; 174(1): 75–123

[13]

Hitchin N. Generalized Calabi-Yau manifolds. Q J Math 2003; 54(3): 281–308

[14]

Ibáñez R, de León M, Lopez B, Marrero J C, Padrón E. Duality and modular class of a Nambu-Poisson structure. J Phys A 2001; 34(17): 3623–3650

[15]

Ibáñez R, de León M, Marrero J C, Martín de Diego D. Dynamics of generalized Poisson and Nambu-Poisson brackets. J Math Phys 1997; 38(5): 2332–2344

[16]

Lang H L, Sheng Y H. Linearization of the higher analogue of Courant algebroids. J Geom Meeh 2020; 12(4): 585–606

[17]

Liu Z J, Weinstein A, Xu P. Manin triples for Lie bialgebroids. J Differential Geom 1997; 45(3): 547–574

[18]

Meinrenken E. Poisson geometry from a Dirac perspective. Lett Math Phys 2018; 10(3): 447–498

[19]

Nakanishi N. On Nambu-Poisson manifolds. Rev Math Phys 1998; 10(4): 499–510

[20]

Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D (3) 1973; 7: 2405–2412

[21]

RoytenbergD. Courant algebroids, derived brackets and even symplectic supermanifolds. Ph D Thesis, Berkeley: University of California, 1999

[22]

Sheng Y H, Zhu C C. Poisson geometry and Lie n-algebras. Sci Sin Math 2017; 47: 1717–1734

[23]

Ševera P, Weinstein A. Poisson geometry with a 3-form background. Progr Theoret Phys Suppl 2001; 2001(144): 145–154

[24]

Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys 1994; 160(2): 295–315

[25]

Vaisman I. A survey on Nambu-Poisson brackets. Acta Math Univ Comenian (N S) 1999; 68(2): 213–241

[26]

Vallejo J A. Nambu-Poisson manifolds and associated n-ary Lie algebroids. J Phys A 2001; 34(13): 2867–2881

[27]

Zambon M. L-algebras and higher analogues of Dirac structures and Courant algebroids. J Symplectic Geom 2012; 10(4): 563–599

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (716KB)

489

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/