Researches on point-discrete families
Shou LIN, Rongxin SHEN
Researches on point-discrete families
Based on the modern development of Metrization theorem for context, the main results obtained in recent ten years on point-discrete families are summarized. This paper mainly introduces the theory of the spaces with -point-discrete bases, the spaces with certain -point-discrete networks, and the relationship between the above spaces and the spaces with certain -compact-finite networks.
Point-discrete families / compact-finite families / generalized metrizable spaces / k-net / weak bases
[1] |
AleksandrovP SFedorchukV VZcevV I. The main aspects in the development of set-theoretic topology. Uspekhi Mat Nauk, 1978, 33(3): 3−48 (in Russian)
|
[2] |
Arhangel’skii A V. An addition theorem for the weight of sets lying in bicompacts. Dokl Akad Nauk SSSR 1959; 126(2): 239–241
|
[3] |
Arhangel’skii A V. Mappings and spaces. Russian Math Surveys 1966; 21(4): 115–162
|
[4] |
AullC ELowenR. Handbook of the History of General Topology, Vol 1. Dordrecht: Kluwer Academic Publishers, 1997
|
[5] |
Bing R H. Metrization of topological spaces. Canad J Math 1951; 3(2): 175–186
|
[6] |
Boone J R. Some characterizations of paracompactness in k-spaces. Fund Math 1971; 72(2): 145–153
|
[7] |
Burke D K, Davis S W. Spaces with σ-weakly hereditarily closure preserving base. Topology Proc 2010; 35: 9–18
|
[8] |
Burke D K, Engelking R, Lutzer D J. Hereditarily closure-preserving collections and metrization. Proc Amer Math Soc 1975; 51(2): 483–488
|
[9] |
BurkeD KLutzerD J. Recent advances in the theory of generalized metric spaces. In: Topology Proc 9th Ann Spring Topological Conf (Memphis State Univ, 1975). Lect Notes Pure and Appl Math 24. New York: Marcel Dekker Inc, 1976, 1–70
|
[10] |
FangJ LHausdorff
|
[11] |
Franklin S P. Spaces in which sequences suffice. Fund Math 1965; 57(1): 107–115
|
[12] |
Gao Z. ℵ-space is invariant under perfect mappings. Questions Answers Gen Topology 1987; 5(2): 271–279
|
[13] |
Ge X, Shen J, Ge Y. Spaces with σ-weakly hereditarily closure-preserving sn-networks. Novi Sad J Math 2007; 37(1): 33–37
|
[14] |
Ge Y. On sn-Metrizable spaces. Acta Math Sin Engl Ser 2002; 45(2): 355–360
|
[15] |
JiangJ G. On the metrizability of affine compactness and topological spaces, Acta Math
|
[16] |
GruenhageG. Generalized metric spaces. In: Handbook of Set-theoretic Topology (Kunen K, Vaughan J E, eds). Amsterdam: Elsevier Science Publishers B V, 1984, 423–501
|
[17] |
GruenhageG. Generalized metric spaces and metrization. In: Recent Progress in General Topology (Hušek M, Van Mill J, eds). Papers from the Prague Topological Symp (Prague, 1991). Amsterdam: Elsevier Science Publishers B V, 1992, 239–274
|
[18] |
GruenhageG. Metrizable spaces and generalizations. In: Recent Progress in General Topology II (Hušek M, Van Mill J, eds). Papers from the Prague Topological Symp (Prague, 2001). Amsterdam: Elsevier Science Publishers B V, 2002, 201–225
|
[19] |
Gruenhage G. A survey of D-spaces. Contemp Math 2011; 533: 13–28
|
[20] |
GruenhageG. Generalized metrizable spaces. In: Recent Progress in General Topology III (Hart K P, Van Mill J, Simon P, eds). Papers from the Prague Topological Symp (Prague, 2011). Amsterdam: Atlantis Press, 2014, 471–505
|
[21] |
Guthrie J A. A characterization of ℵ0-spaces. General Topology Appl 1971; 1(2): 105–110
|
[22] |
HartK PVan MillJSimonP. Recent Progress in General Topology III. Papers from the Prague Topological Symp (Prague, 2011). Amsterdam: Atlantis Press, 2014
|
[23] |
HartK PNagataJVaughanJ E. Encyclopedia of General Topology. Amsterdam: Elsevier Science Publishers B V, 2004
|
[24] |
HausdorffF. Grundzüge der Mengenlehre. Leipzig: Veriag von Veit und Comp, 1914 (in German)
|
[25] |
Lašnev N. Closed images of metric spaces. Dokl Akad Nauk SSSR 1966; 170: 505–507
|
[26] |
Lin F C. σ–point–discrete cs*–networks and wcs*–networks. J Adv Research Pure Math 2010; 2(3): 7–12
|
[27] |
LinF C. Topological algebra and generalized metric spaces. Xiamen: Xiamen Univ Press, 2012
|
[28] |
Lin F C, Lin S. Some notes on sequence-covering maps. J Math Res Appl 2014; 34(1): 97–104
|
[29] |
Lin F C, Lin S. Sequence-covering maps on generalized metric spaces. Houston J Math 2014; 40(3): 927–943
|
[30] |
Lin F C, Shen R X. Some notes on σ-point-discrete sn-networks. Adv Math (China) 2010; 39(2): 212–216
|
[31] |
Lin S. On normal separable ℵ-spaces. Questions Answers Gen Topology 1987; 5: 249–254
|
[32] |
Lin S. A study of pseudobases. Questions Answers Gen Topology 1988; 6: 81–97
|
[33] |
Lin S. On sequence-covering s-mappings. Adv Math (China) 1996; 25(6): 548–551
|
[34] |
Lin S. A note on the Arens’ space and sequential fan. Topology Appl 1997; 81(3): 185–196
|
[35] |
LinS. Point countable coverings and sequential coverings mappings. Beijing: Science Press, 2002
|
[36] |
LinS. Generalized metric spaces and mappings. Beijing: Science Press, 2007
|
[37] |
Lin S, Tanaka Y. Point-countable k-networks, closed maps, and related results. Topology Appl 1994; 59(1): 79–86
|
[38] |
Lin Y, Yan L. A note on spaces with a σ-compact-finite weak base. Tsukuba J Math 2004; 28(1): 85–91
|
[39] |
Liu C. Spaces with a σ-compact finite k-network. Questions Answers Gen Topology 1992; 10: 81–87
|
[40] |
Liu C. Notes on g-metrizable spaces. Topology Proc 2005; 29(1): 207–215
|
[41] |
Liu C. On weak bases. Topology Appl 2005; 150(13): 91–99
|
[42] |
Liu C, Lin S. On countable-to-one maps. Topology Appl 2007; 154(2): 449–454
|
[43] |
Liu C, Lin S, Ludwig L D. Spaces with a σ-point-discrete weak base. Tsukuba J Math 2008; 32(1): 165–177
|
[44] |
Liu C, Ludwig L D. Nagata-Smirnov revisited: spaces with σ-WHCP bases. Topology Proc 2005; 29(2): 559–565
|
[45] |
Michael E A. Another note on paracompact spaces. Proc Amer Math Soc 1957; 8(4): 822–828
|
[46] |
Michael E A. A quintuple quotient quest. General Topology Appl 1972; 2(2): 91–138
|
[47] |
MoritaKNagataJ. Topics in General Topology. Amsterdam: Elsevier Science Publishers B V, 1989
|
[48] |
Nagata J. On a necessary and sufficient condition of metrizability. J Inst Polytech Osaka City Univ 1950; 1(2A): 93–100
|
[49] |
Okuyama A. On a generalization of Σ-spaces. Pacific J Math 1972; 42(2): 485–495
|
[50] |
O’Meara P. On paracompactness in function spaces with the compact open topology. Proc Amer Math Soc 1971; 29(1): 183–189
|
[51] |
Shang Y, Wang S Z. The discussion of spaces with σ-WHCP or σ-compact-finite sets. J Capital Norm Univ Nat Sci Ed 2007; 28(6): 16–21
|
[52] |
Shen R, Lin S. Spaces with σ-point-discrete ℵ0-weak bases. Appl Math J Chinese Univ 2013; 28B(l): 116–126
|
[53] |
Sirois-Dumais R. Quasi- and weakly-quasi-firs seven-countable spaces. Topology Appl 1980; 11(2): 223–230
|
[54] |
Smirnov M. On the metrization of topological spaces. Uspekhi Mat Nauk 1951; 6(6): 100–111
|
[55] |
Urysohn P. Zurn Metrisationsproblem. Math Ann 1925; 94(1): 309–315
|
[56] |
Van DouwenE K. Simultaneous extension of continuous functions. PhD Thesis. Amsterdam: Free Univ of Amsterdam, 1975
|
[57] |
EditorialCommittee of the Encyclopedia of China. Encyclopedia of China (Mathematics Vol). Beijing: Encyclopedia of China Press, 1988
|
/
〈 | 〉 |