Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras
Demin YU, Caihui LU
Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras
In this paper, a new infinite-dimensional necklace Lie algebra is studied and the left and right index arrays of a necklace word in necklace Lie algebra is first defined. Using the left and right index arrays, we divide the necklace words into 5 classes. We discuss finite-dimensional Lie subalgebras of necklace Lie algebras intensively and prove that some subalgebras are isomorphism to simple Lie algebra sl.
Necklace Lie algebra / left and right index arrays / subalgebra
[1] |
Bocklandt R, Le Bruyn L. Necklace Lie algebras and noncommutative symplectic geometry. Math Z 2002; 240(1): 141–167
|
[2] |
Ginzburg V. Non-commutative symplectic geometry, quiver varieties, and operads. Math Res Lett 2001; 8(3): 377–400
|
[3] |
Guo J Y, Martínez-Villa R. Algebra pairs associated to McKay quivers. Comm Algebra 2002; 30(2): 1017–1032
|
[4] |
LothaireM. Combinations on Words. Encyclopedia Math Appl, Vol 17. Reading: Addison-Wesley Publishing Co, 1983
|
[5] |
Mei C Q, Yu D M. The structure of Necklace Lie algebras. Math Pract Theory 2012; 42(1): 195–204
|
[6] |
Peng L G. Lie algebras determined by finite Auslander-Reiten quivers. Comm Algebra 1998; 26(9): 2711–2725
|
[7] |
Post G F. On the structure of transitively differential algebras. J Lie Theory 2001; 11(1): 111–128
|
[8] |
ReutenauerC. Free Lie Algebras. London Math Soc Monogr Ser, Vol 7. Oxford: Clarendon Press, 1993
|
[9] |
Yu D M, Li B J, Wan Q H. The automorphism group and simplicity of the generalized Virasoro-like Lie algebra. Adv Math (China) 2013; 42(5): 620–624
|
[10] |
Yu D M, Lu C H. Special property of Lie algebra L(Z, f, δ). Adv Math (China) 2006; 35(6): 707–711
|
[11] |
Yu D M, Mei C Q, Guo J Y. Homomorphisms of some special necklace Lie algebras. Chinese Ann Math Ser A 2009; 30(4): 551–562
|
[12] |
Yu D M, Mei C Q, Guo J Y. Automorphisms and automorphism groups of Necklace Lie algebras. Chinese Ann Math Ser A 2013; 34(5): 569–578
|
/
〈 | 〉 |