Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras

Demin YU , Caihui LU

Front. Math. China ›› 2023, Vol. 18 ›› Issue (5) : 353 -365.

PDF (963KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (5) : 353 -365. DOI: 10.3868/s140-DDD-023-0025-x
RESEARCH ARTICLE

Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras

Author information +
History +
PDF (963KB)

Abstract

In this paper, a new infinite-dimensional necklace Lie algebra is studied and the left and right index arrays of a necklace word in necklace Lie algebra is first defined. Using the left and right index arrays, we divide the necklace words into 5 classes. We discuss finite-dimensional Lie subalgebras of necklace Lie algebras intensively and prove that some subalgebras are isomorphism to simple Lie algebra sl(n).

Graphical abstract

Keywords

Necklace Lie algebra / left and right index arrays / subalgebra

Cite this article

Download citation ▾
Demin YU, Caihui LU. Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras. Front. Math. China, 2023, 18(5): 353-365 DOI:10.3868/s140-DDD-023-0025-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bocklandt R, Le Bruyn L. Necklace Lie algebras and noncommutative symplectic geometry. Math Z 2002; 240(1): 141–167

[2]

Ginzburg V. Non-commutative symplectic geometry, quiver varieties, and operads. Math Res Lett 2001; 8(3): 377–400

[3]

Guo J Y, Martínez-Villa R. Algebra pairs associated to McKay quivers. Comm Algebra 2002; 30(2): 1017–1032

[4]

LothaireM. Combinations on Words. Encyclopedia Math Appl, Vol 17. Reading: Addison-Wesley Publishing Co, 1983

[5]

Mei C Q, Yu D M. The structure of Necklace Lie algebras. Math Pract Theory 2012; 42(1): 195–204

[6]

Peng L G. Lie algebras determined by finite Auslander-Reiten quivers. Comm Algebra 1998; 26(9): 2711–2725

[7]

Post G F. On the structure of transitively differential algebras. J Lie Theory 2001; 11(1): 111–128

[8]

ReutenauerC. Free Lie Algebras. London Math Soc Monogr Ser, Vol 7. Oxford: Clarendon Press, 1993

[9]

Yu D M, Li B J, Wan Q H. The automorphism group and simplicity of the generalized Virasoro-like Lie algebra. Adv Math (China) 2013; 42(5): 620–624

[10]

Yu D M, Lu C H. Special property of Lie algebra L(Z, f, δ). Adv Math (China) 2006; 35(6): 707–711

[11]

Yu D M, Mei C Q, Guo J Y. Homomorphisms of some special necklace Lie algebras. Chinese Ann Math Ser A 2009; 30(4): 551–562

[12]

Yu D M, Mei C Q, Guo J Y. Automorphisms and automorphism groups of Necklace Lie algebras. Chinese Ann Math Ser A 2013; 34(5): 569–578

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (963KB)

532

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/