Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras

Demin YU, Caihui LU

PDF(963 KB)
PDF(963 KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (5) : 353-365. DOI: 10.3868/s140-DDD-023-0025-x
RESEARCH ARTICLE

Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras

Author information +
History +

Abstract

In this paper, a new infinite-dimensional necklace Lie algebra is studied and the left and right index arrays of a necklace word in necklace Lie algebra is first defined. Using the left and right index arrays, we divide the necklace words into 5 classes. We discuss finite-dimensional Lie subalgebras of necklace Lie algebras intensively and prove that some subalgebras are isomorphism to simple Lie algebra sl(n).

Graphical abstract

Keywords

Necklace Lie algebra / left and right index arrays / subalgebra

Cite this article

Download citation ▾
Demin YU, Caihui LU. Infinite-dimensional necklace Lie algebras and some finite-dimensional important subalgebras. Front. Math. China, 2023, 18(5): 353‒365 https://doi.org/10.3868/s140-DDD-023-0025-x

References

[1]
Bocklandt R, Le Bruyn L. Necklace Lie algebras and noncommutative symplectic geometry. Math Z 2002; 240(1): 141–167
[2]
Ginzburg V. Non-commutative symplectic geometry, quiver varieties, and operads. Math Res Lett 2001; 8(3): 377–400
[3]
Guo J Y, Martínez-Villa R. Algebra pairs associated to McKay quivers. Comm Algebra 2002; 30(2): 1017–1032
[4]
LothaireM. Combinations on Words. Encyclopedia Math Appl, Vol 17. Reading: Addison-Wesley Publishing Co, 1983
[5]
Mei C Q, Yu D M. The structure of Necklace Lie algebras. Math Pract Theory 2012; 42(1): 195–204
[6]
Peng L G. Lie algebras determined by finite Auslander-Reiten quivers. Comm Algebra 1998; 26(9): 2711–2725
[7]
Post G F. On the structure of transitively differential algebras. J Lie Theory 2001; 11(1): 111–128
[8]
ReutenauerC. Free Lie Algebras. London Math Soc Monogr Ser, Vol 7. Oxford: Clarendon Press, 1993
[9]
Yu D M, Li B J, Wan Q H. The automorphism group and simplicity of the generalized Virasoro-like Lie algebra. Adv Math (China) 2013; 42(5): 620–624
[10]
Yu D M, Lu C H. Special property of Lie algebra L(Z, f, δ). Adv Math (China) 2006; 35(6): 707–711
[11]
Yu D M, Mei C Q, Guo J Y. Homomorphisms of some special necklace Lie algebras. Chinese Ann Math Ser A 2009; 30(4): 551–562
[12]
Yu D M, Mei C Q, Guo J Y. Automorphisms and automorphism groups of Necklace Lie algebras. Chinese Ann Math Ser A 2013; 34(5): 569–578

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(963 KB)

Accesses

Citations

Detail

Sections
Recommended

/