A survey of the study of combinatorial batch code
Dongdong JIA, Yuebo SHEN, Gengsheng ZHANG
A survey of the study of combinatorial batch code
A combinatorial batch code has strong practical motivation in the distributed storage and retrieval of data in a database. In this survey, we give a brief introduction to the combinatorial batch codes and some progress.
Combinatorial batch codes / optimal CBC / uniform CBC / set system
[1] |
Balachandran N, Bhattacharya S. On an extremal hypergraph problem related to combinatorial batch codes. Discrete Appl Math 2014; 162: 373–380
|
[2] |
Bhattacharya S, Ruj S, Roy B. Combinatorial batch codes: a lower bound and optimal constructions. Adv Math Comm 2012; 6(2): 165–174
|
[3] |
Brualdi R A, Kiernan K P, Meyer S A, Schroeder M W. Combinatorial batch codes and transversal matroids. Adv Math Comm 2010; 4: 419–431
|
[4] |
Brualdi R A, Kiernan K P, Meyer S A, Schroeder M W. Erratum to “Combinatorial batch codes and transversal matroids”. Adv In Math Comm 2010; 4(3): 597
|
[5] |
Bujtás C, Tuza Z. Combinatorial batch codes: extremal problems under Hall-type conditions. Electron Notes Discrete Math 2011; 38: 201–206
|
[6] |
Bujtás C, Tuza Z. Optimal batch codes: many items or low retrieval requirement. Adv Math Comm 2011; 5(3): 529–541
|
[7] |
Bujtás C, Tuza Z. Optimal combinatorial batch codes derived from dual systems. Miskolc Math Notes 2011; 12(1): 11–23
|
[8] |
Bujtás C, Tuza Z. Relaxations of Hall’s condition: optimal batch codes with multiple queries. Appl Anal Discrete Math 2012; 6(1): 72–81
|
[9] |
Bujtás C, Tuza Z. Turán numbers and batch codes. Discrete Appl Math 2015; 186: 45–55
|
[10] |
Chen J F, Zhang S M, Zhang G S. Optimal combinatorial batch code: monotonicity, lower and upper bounds. Sci Sin Math 2015; 45(3): 311–320
|
[11] |
ChenS B. A New Combinatorial Batch Code. Master Thesis. Beijing: Beijing Jiaotong University, 2010 (in Chinese)
|
[12] |
IshaiYKushilevitzEOstrovskyRSahaiA. Batch codes and their applications, In: STOC’04 (Proceedings of the 36th Annual ACM Symposium on Theory of Computing). New York, 2004, 262–271
|
[13] |
Jia D D, Zhang G S, Yuan L D. A class of optimal combinatorial batch code. Acta Math Sin, Chin Ser 2016; 59(2): 267–278
|
[14] |
Liu X, Zhang S M, Zhang G S. Combinatorial batch codes based on RTD (q−2, q). Adv Math (China) 2016; 45(5): 700–710
|
[15] |
Patterson M B, Stinson D R, Wei R. Combinatorial batch codes. Adv Math Comm 2009; 3(1): 13–27
|
[16] |
RujSRoyB. More on combinatorial batch codes. arXiv: 0809.3357v1
|
[17] |
Silberstein N, Gál A. Optimal combinatorial batch codes based on block designs. Des Codes and Cryptogr 2016; 78: 409–424
|
/
〈 | 〉 |