A survey of the study of combinatorial batch code

Dongdong JIA, Yuebo SHEN, Gengsheng ZHANG

PDF(532 KB)
PDF(532 KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (5) : 301-312. DOI: 10.3868/s140-DDD-023-0024-x
SURVEY ARTICLE

A survey of the study of combinatorial batch code

Author information +
History +

Abstract

A combinatorial batch code has strong practical motivation in the distributed storage and retrieval of data in a database. In this survey, we give a brief introduction to the combinatorial batch codes and some progress.

Keywords

Combinatorial batch codes / optimal CBC / uniform CBC / set system

Cite this article

Download citation ▾
Dongdong JIA, Yuebo SHEN, Gengsheng ZHANG. A survey of the study of combinatorial batch code. Front. Math. China, 2023, 18(5): 301‒312 https://doi.org/10.3868/s140-DDD-023-0024-x

References

[1]
Balachandran N, Bhattacharya S. On an extremal hypergraph problem related to combinatorial batch codes. Discrete Appl Math 2014; 162: 373–380
[2]
Bhattacharya S, Ruj S, Roy B. Combinatorial batch codes: a lower bound and optimal constructions. Adv Math Comm 2012; 6(2): 165–174
[3]
Brualdi R A, Kiernan K P, Meyer S A, Schroeder M W. Combinatorial batch codes and transversal matroids. Adv Math Comm 2010; 4: 419–431
[4]
Brualdi R A, Kiernan K P, Meyer S A, Schroeder M W. Erratum to “Combinatorial batch codes and transversal matroids”. Adv In Math Comm 2010; 4(3): 597
[5]
Bujtás C, Tuza Z. Combinatorial batch codes: extremal problems under Hall-type conditions. Electron Notes Discrete Math 2011; 38: 201–206
[6]
Bujtás C, Tuza Z. Optimal batch codes: many items or low retrieval requirement. Adv Math Comm 2011; 5(3): 529–541
[7]
Bujtás C, Tuza Z. Optimal combinatorial batch codes derived from dual systems. Miskolc Math Notes 2011; 12(1): 11–23
[8]
Bujtás C, Tuza Z. Relaxations of Hall’s condition: optimal batch codes with multiple queries. Appl Anal Discrete Math 2012; 6(1): 72–81
[9]
Bujtás C, Tuza Z. Turán numbers and batch codes. Discrete Appl Math 2015; 186: 45–55
[10]
Chen J F, Zhang S M, Zhang G S. Optimal combinatorial batch code: monotonicity, lower and upper bounds. Sci Sin Math 2015; 45(3): 311–320
[11]
ChenS B. A New Combinatorial Batch Code. Master Thesis. Beijing: Beijing Jiaotong University, 2010 (in Chinese)
[12]
IshaiYKushilevitzEOstrovskyRSahaiA. Batch codes and their applications, In: STOC’04 (Proceedings of the 36th Annual ACM Symposium on Theory of Computing). New York, 2004, 262–271
[13]
Jia D D, Zhang G S, Yuan L D. A class of optimal combinatorial batch code. Acta Math Sin, Chin Ser 2016; 59(2): 267–278
[14]
Liu X, Zhang S M, Zhang G S. Combinatorial batch codes based on RTD (q−2, q). Adv Math (China) 2016; 45(5): 700–710
[15]
Patterson M B, Stinson D R, Wei R. Combinatorial batch codes. Adv Math Comm 2009; 3(1): 13–27
[16]
RujSRoyB. More on combinatorial batch codes. arXiv: 0809.3357v1
[17]
Silberstein N, Gál A. Optimal combinatorial batch codes based on block designs. Des Codes and Cryptogr 2016; 78: 409–424

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(532 KB)

Accesses

Citations

Detail

Sections
Recommended

/