The lower bound of revised edge-Szeged index of unicyclic graphs with given diameter

Min WANG, Mengmeng LIU

PDF(1097 KB)
PDF(1097 KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (4) : 251-275. DOI: 10.3868/s140-DDD-023-0020-x
RESEARCH ARTICLE
RESEARCH ARTICLE

The lower bound of revised edge-Szeged index of unicyclic graphs with given diameter

Author information +
History +

Abstract

Given a connected graph G, the revised edge-revised Szeged index is defined as Sze(G)=e=uvEG(mu(e)+m0(e)2)(mv(e)+m0(e)2), where mu(e), mv(e) and m0(e) are the number of edges of G lying closer to vertex u than to vertex v, the number of edges of G lying closer to vertex v than to vertex u and the number of edges of G at the same distance to u and v, respectively. In this paper, by transformation and calculation, the lower bound of revised edge-Szeged index of unicyclic graphs with given diameter is obtained, and the extremal graph is depicted.

Graphical abstract

Keywords

Wiener index / revised edge Szeged index / unicyclic graph / extremal graph

Cite this article

Download citation ▾
Min WANG, Mengmeng LIU. The lower bound of revised edge-Szeged index of unicyclic graphs with given diameter. Front. Math. China, 2023, 18(4): 251‒275 https://doi.org/10.3868/s140-DDD-023-0020-x

References

[1]
Aouchiche M, Hansen P. On a conjecture about the Szeged index. European J Combin 2010; 31(7): 1662–1666
[2]
BondyJ AMurtyU S R. Graph Theory. Graduate Texts in Mathematics, Vol 244, New York: Springer, 2008
[3]
Chen L L, Li X L, Liu M M. On a relation between the Szeged and the Wiener indices of bipartite graphs. Trans Combin 2012; 1(4): 43–49
[4]
Dobrynin A A. Graphs having the maximal value of the szeged index. Croat Chem Acta 1997; 70(3): 819–825
[5]
Dobrynin A A, Entringer R, Gutman I. Wiener index of trees: theory and applications. Acta Appl Math 2001; 66(3): 211–249
[6]
Dong H, Zhou B, Trinajsti N. A novel version of the edge-Szeged index. Croat Chem Acta 2011; 84(4): 543–545
[7]
Graovac A, Pisanski T. On the Wiener index of a graph. J Math Chem 1991; 8(1/2/3): 53–62
[8]
Gutman I. A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes N Y 1994; 27: 9–15
[9]
Gutman I, Ashrafi A R. The edge version of the Szeged index. Croat Chem Acta 2008; 81(2): 263–266
[10]
Gutman I, Klavzar S, Mohar B. Fifty years of the Wiener index. MATCH Commun Math Comput Chem 1997; 35: 259
[11]
Gutman I, Yeh Y N, Long S, Luo Y L. Some recent results in the theory of the Wiener number. Indian J Chem 1993; 32A: 651–661
[12]
Ilic A. Note on PI and Szeged indices. Math Comput Model 2010; 52(9/10): 1570–1576
[13]
Liu M M, Chen L L. Bicyclic graphs with maximal edge revised Szeged index. Discrete Appl Math 2016; 215: 225–230
[14]
Liu M M, Wang S J. Cactus graphs with minimum edge revised Szeged index. Discrete Appl Math 2018; 247: 90–96
[15]
Pisanski T, Zerovnik J. Edge-contributions of some topological indices and arboreality of molecular graphs. Ars Math Contemp 2009; 2(1): 49–58
[16]
Randić . On generalization of Wiener index for cyclic structures. Acta Chim Slov 2002; 49: 483–496
[17]
Simi S, Gutman I, Balti V. Some graphs with extremal Szeged index. Math Slovaca 2000; 50(1): 1–15
[18]
Wang G F, Li S C, Qi D C, Zhang H H. On the edge-Szeged index of unicyclic graphs with given diameter. Appl Math Comput 2018; 336: 94–106
[19]
Wiener H. Structural determination of paraffin boiling points. J Amer Chem Soc 1947; 69(1): 17–20
[20]
Xing R D, Zhou B. On the revised Szeged index. Discrete Appl Math 2010; 159(1): 69–78

RIGHTS & PERMISSIONS

2023 Higher Education Press 2023
AI Summary AI Mindmap
PDF(1097 KB)

Accesses

Citations

Detail

Sections
Recommended

/