Waring−Goldbach problem for one prime power and four prime cubes under Riemann Hypothesis

Xiaoming PAN , Liqun HU

Front. Math. China ›› 2023, Vol. 18 ›› Issue (2) : 139 -146.

PDF (363KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (2) : 139 -146. DOI: 10.3868/s140-DDD-023-0008-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Waring−Goldbach problem for one prime power and four prime cubes under Riemann Hypothesis

Author information +
History +
PDF (363KB)

Abstract

Let k1 be an integer. Assume that RH holds. In this paper we prove that a suitable asymptotic formula for the average number of representations of integers n=p1k+p23+p33+p43+p53, where p1,p2,p3,p4,p5 are prime numbers. This expands the previous results.

Keywords

Hardy−Littlewood method / Waring−Goldbach problem / Riemann Hypothesis / short intervals

Cite this article

Download citation ▾
Xiaoming PAN, Liqun HU. Waring−Goldbach problem for one prime power and four prime cubes under Riemann Hypothesis. Front. Math. China, 2023, 18(2): 139-146 DOI:10.3868/s140-DDD-023-0008-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bauer C. An improvement on a theorem of the Goldbach−Waring type. Rocky Mount J Math 2001; 31: 1151–1170

[2]

Bauer C. A remark on a theorem of the Goldbach−Waring type. Studia Sci Math Hungar 2004; 41: 309–324

[3]

BrüdernJ. A ternary problem in additive prime number theory. In: From Arithmetic to Zeta-Functions. Cham: Springer, 2016

[4]

FengZ ZMaJ. Waring−Goldbach problem for unlike powers. 2019. arXiv:1907.11918v1

[5]

Hoffman J W, Yu G. A ternary additive problem. Monatsh Math 2013; 172(3/4): 293–321

[6]

Languasco A, Zaccagnini A. Sum of one prime and two squares of primes in short intervals. J Number Theory 2016; 159: 45–48

[7]

Languasco A, Zaccagnini A. Short intervals asymptotic formulae for binary problems with primes and powers, Ⅱ: density 1. Monatsh Math 2016; 181(2): 419–435

[8]

Languasco A, Zaccagnini A. Sum of four prime and cubes in short intervals. Acta Math Hungar 2019; 159(1): 150–163

[9]

Liu H F, Huang J. Diophantine approximation with mixed powers of primes. Taiwanese J Math 2019; 23(5): 1073–1090

[10]

MontgomeryH L. Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis. CBMS Regional Conference Series in Mathematics, Vol 84. Providence, RI: AMS, 1994

[11]

Schwarz W. Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen, Ⅱ. J Reine Angew Math 1961; 206: 78–112

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (363KB)

512

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/