Character codegrees in finite groups

Guohua QIAN

Front. Math. China ›› 2023, Vol. 18 ›› Issue (1) : 15 -32.

PDF (897KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (1) : 15 -32. DOI: 10.3868/S140-DDD-023-006-X
SURVEY ARTICLE
SURVEY ARTICLE

Character codegrees in finite groups

Author information +
History +
PDF (897KB)

Abstract

For an irreducible character χ of a finite group G, we define its codegree as cod(χ)=|G:kerχ|χ(1). In this paper, we introduce some known results and unsolved problems about character codegrees in finite groups.

Keywords

Finite group / character / character codegree

Cite this article

Download citation ▾
Guohua QIAN. Character codegrees in finite groups. Front. Math. China, 2023, 18(1): 15-32 DOI:10.3868/S140-DDD-023-006-X

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahanjideh N. The Fitting subgroup, p-length, derived length and character table. Math Nachr 2021; 294(2): 214–223

[2]

Alizadeh F, Behravesh H, Ghaffarzadeh M, Ghasemi M, Hekmatara S. Groups with few codegrees of irreducible characters. Comm Algebra 2019; 47(3): 1147–1152

[3]

Alizadeh F, Ghasemi M, Ghaffarzadeh M. Finite groups whose codegrees are almost prime. Comm Algebra 2021; 49(2): 538–544

[4]

Bahramian R, Ahanjideh N. p-divisibility of co-degrees of irreducible characters. Bull Aust Math Soc 2021; 103(1): 78–82

[5]

Bahramian R, Ahanjideh N. p-parts of co-degrees of irreducible characters. Comptes Rendus Math Acad Sci Paris 2021; 359: 79–83

[6]

Bahri A, Akhlaghi Z, Khosravi B. An analogue of Huppert’s conjecture for character codegrees. Bull Aust Math Soc 2021; 104(2): 278–286

[7]

Chen X, Yang Y. Normal p-complements and monomial characters. Monatsh Math 2020; 193(4): 807–810

[8]

Chillag D, Herzog M. On character degree quotients. Arch Math (Basel) 1990; 55(1): 25–29

[9]

Chillag D, Mann A, Manz O. The codegrees of irreducible characters. Israel J Math 1991; 73(2): 207–223

[10]

Croome S, Lewis M L. Character codegrees of maximal class p-groups. Canad Math Bull 2020; 63(2): 328–334

[11]

Du N, Lewis M L. Codegrees and nilpotence class of p-groups. J Group Theory 2016; 19(4): 561–567

[12]

Gagola S M Jr, Lewis M L. A character theoretic condition characterizing nilpotent groups. Comm Algebra 1999; 27(3): 1053–1056

[13]

Gao Y, Liu Y. On codegrees and solvable groups. Bull Iranian Math Soc 2022; 48(4): 1357–1363

[14]

HuppertB. Character Theory of Finite Groups. De Gruyter Expositions in Mathematics, Vol 25. Berlin: Walter de Gruyter & Co, 1998

[15]

IsaacsI M. Character Theory of Finite Groups. NewYork: Academic Press, 1976

[16]

Isaacs I M. Element orders and character codegrees. Arch Math (Basel) 2011; 97(6): 499–501

[17]

Keller T M. Solvable groups with a small number of prime divisors in the element orders. J Algebra 1994; 170(2): 625–648

[18]

Keller T M. A linear bound for ρ(n). J Algebra 1995; 178(2): 643–652

[19]

Liang D, Qian G. Finite groups with coprime character degrees and codegrees. J Group Theory 2016; 19(5): 763–776

[20]

Liang D, Qian G, Shi W. Finite groups whose all irreducible character degrees are Hall-numbers. J Algebra 2007; 307(2): 695–703

[21]

Liu J, Wu K, Meng W. P-characters and the structure of finite solvable groups. J Group Theory 2021; 24(2): 285–291

[22]

Liu Y, Yang Y. Nonsolvable groups with four character codegrees. J Algebra Appl 2021; 20(11): Paper No 2150196 (5 pp)

[23]

Liu Y, Yang Y. Nonsolvable groups with five character codegrees. Comm Algebra 2021; 49(3): 1274–1279

[24]

Moretó A. Huppert’s conjecture for character codegrees. Math Nachr 2021; 294(11): 2232–2236

[25]

Qian G. Notes on character degrees quotients of finite groups. J Math 2002; 22(2): 217–220

[26]

Qian G. Character degrees quotients and structures of finite groups. Chinese Ann Math Ser A 2005; 26(3): 307–312

[27]

Qian G, Wang Y, Wei H. Co-degrees of irreducible characters in finite groups. J Algebra 2007; 312(2): 946–955

[28]

Qian G. A note on element orders and character codegrees. Arch Math (Basel) 2011; 97(2): 99–103

[29]

Qian G. A character theoretic criterion for p-closed group. Israel J Math 2012; 190: 401–412

[30]

Qian G. A note on p-parts of character degrees. Bull Lond Math Soc 2018; 50(4): 663–666

[31]

Qian G. Element orders and character codegrees. Bull Lond Math Soc 2021; 53(3): 820–824

[32]

Qian G, Yang Y. Nonsolvable groups with no prime dividing three character degrees. J Algebra 2015; 436: 145–160

[33]

Qian G, Zhou Y. On p-parts of character codegrees. J Group Theory 2021; 24(5): 1005–1018

[34]

Ren Y. On character degrees quotients of finite groups. Acta Math Sinica Chin Ser 1995; 38(2): 164–170

[35]

Sayanjali Z, Akhlaghi Z, Khosravi B. On the codegrees of finite groups. Comm Algebra 2020; 48(3): 1327–1332

[36]

Tong-Viet H P. Brauer characters and normal Sylow p-subgroups. J Algebra 2018; 503: 265–276

[37]

Xiong H. Finite groups whose character graphs associated with codegrees have no triangles. Algebra Colloq 2016; 23(1): 15–22

[38]

Yang D, Gao C, Lv H. Finite groups with special codegrees. Arch Math (Basel) 2020; 115(2): 121–130

[39]

Yang Y. On analogues of Huppert’s conjecture. Bull Aust Math Soc 2021; 104(2): 272–277

[40]

Yang Y, Qian G. The analog of Huppert’s conjecture on character codegrees. J Algebra 2017; 478: 215–219

[41]

Yang Y, Qian G. On p-parts of character degrees and conjugacy class sizes of finite groups. Adv Math 2018; 328: 356–366

[42]

Zhang J. Arithmetical conditions on element orders and group structure. Proc Amer Math Soc 1995; 123(1): 39–44

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (897KB)

1177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/