The cosemisimplicity and cobraided structures of monoidal comonads

Xiaohui ZHANG, Hui WU

PDF(234 KB)
PDF(234 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 485-499. DOI: 10.1007/s11464-022-1019-9
RESEARCH ARTICLE
RESEARCH ARTICLE

The cosemisimplicity and cobraided structures of monoidal comonads

Author information +
History +

Abstract

In this paper, we study the category of corepresentations of a monoidal comonad. We show that it is a semisimple category if and only if the monoidal comonad is a cosemisipmle (coseparable) comonad, and it is a braided category if and only if the monoidal comonad admit a cobraided structure. At last, as an application, the braided structure and the semisimplicity of the Hom-comodule category of a monoidal Hom-bialgebra are discussed.

Keywords

Comonads / braided cateogries / monoidal Hom-Hopf algebras

Cite this article

Download citation ▾
Xiaohui ZHANG, Hui WU. The cosemisimplicity and cobraided structures of monoidal comonads. Front. Math. China, 2022, 17(3): 485‒499 https://doi.org/10.1007/s11464-022-1019-9

References

[1]
MacLane S. Homologie des anneaux et des modules. Colloque de topologie algebrique, Louvain, 1956
[2]
Beck J. Distributive laws. in: Seminar on Triples and Categorical Homology Theory, B. Eckmann (ed.), Springer LNM, 1969 80, 119–140
CrossRef Google scholar
[3]
Street R. The formal theory of monads. J. Pure Appl. Algebra, 1972, 2(2): 149–168
CrossRef Google scholar
[4]
Blackwell R, Kelly M, Power J. Two-dimensional monad theory. J. Pure Appl. Algebra, 1989, 59(1): 1–41
CrossRef Google scholar
[5]
Moerdijk I. Monads on tensor categories. J. Pure Appl. Algebra, 2002, 168(2–3): 189–208
CrossRef Google scholar
[6]
Bruguières A, Virelizier A. Hopf monads. Adv. Math., 2007, 215(2): 679–733
CrossRef Google scholar
[7]
Bruguières A, Virelizier A. Hopf monads on monoidal categories. Adv. Math., 2011, 227(2): 745–800
CrossRef Google scholar
[8]
Mesablishvili B, Wisbauer R. Bimonads and Hopf Monads on Categories. J. K-theory, 2011, 7(2): 349–388
CrossRef Google scholar
[9]
Böhm G, Brzezi`nski T, Wisbauer R. Monads and comands on module categories. J. Algebra, 2009, 322(5): 1719–1747
CrossRef Google scholar
[10]
Power J, Watanabe H. Combining a monad and a comonad. Theor. Comput. Sci., 2002, 280(1–2): 137–162
CrossRef Google scholar
[11]
Wang D G, Dai R X. Entwining structures of monads and comonads. Acta Mathematica Sinica, Chinese Series, 2008, 51(5): 927–932 (in Chinese)
[12]
Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras. Comm Algebra, 2011, 39: 2216–2240
CrossRef Google scholar
[13]
Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using q-derivations. J. Algebra, 2006, 295: 314–361
CrossRef Google scholar
[14]
Hu N H. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq., 1999, 6(1): 51–70
[15]
Makhlouf A, Silvestrov S. Hom-algebras structures. J. Gen. Lie Theory Appl., 2008, 2: 51–64
CrossRef Google scholar
[16]
Yau D. Hom-quantum groups I: Quasitriangular Hom-bialgebras. J. Phys. A, 2012, 45(6): 065203
CrossRef Google scholar
[17]
Makhlouf A, Silvestrov S. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. Generalized Lie theory in Mathematics. Physics and Beyond. Springer-Verlag, Berlin, 2008, Chp 17, 189–206
CrossRef Google scholar
[18]
Wang Z W, Chen Y Y, Zhang L Y. The antipode and Drinfel’d double of Hom-Hopf algebras (in Chinese). Sci Sin Math, 2012, 42(11): 1079–1093
CrossRef Google scholar
[19]
Frégier Y, Gohr A. On Hom-type algebras. J. Gen. Lie Theory Appl., 2010, 4: 1–16
CrossRef Google scholar
[20]
Rafel M. Separable functors revisited. Comm. Algebra, 1990, 18: 1445–1459
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/