The cosemisimplicity and cobraided structures of monoidal comonads

Xiaohui ZHANG , Hui WU

Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 485 -499.

PDF (234KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 485 -499. DOI: 10.1007/s11464-022-1019-9
RESEARCH ARTICLE
RESEARCH ARTICLE

The cosemisimplicity and cobraided structures of monoidal comonads

Author information +
History +
PDF (234KB)

Abstract

In this paper, we study the category of corepresentations of a monoidal comonad. We show that it is a semisimple category if and only if the monoidal comonad is a cosemisipmle (coseparable) comonad, and it is a braided category if and only if the monoidal comonad admit a cobraided structure. At last, as an application, the braided structure and the semisimplicity of the Hom-comodule category of a monoidal Hom-bialgebra are discussed.

Keywords

Comonads / braided cateogries / monoidal Hom-Hopf algebras

Cite this article

Download citation ▾
Xiaohui ZHANG, Hui WU. The cosemisimplicity and cobraided structures of monoidal comonads. Front. Math. China, 2022, 17(3): 485-499 DOI:10.1007/s11464-022-1019-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MacLane S. Homologie des anneaux et des modules. Colloque de topologie algebrique, Louvain, 1956

[2]

Beck J. Distributive laws. in: Seminar on Triples and Categorical Homology Theory, B. Eckmann (ed.), Springer LNM, 1969 80, 119–140

[3]

Street R. The formal theory of monads. J. Pure Appl. Algebra, 1972, 2(2): 149–168

[4]

Blackwell R, Kelly M, Power J. Two-dimensional monad theory. J. Pure Appl. Algebra, 1989, 59(1): 1–41

[5]

Moerdijk I. Monads on tensor categories. J. Pure Appl. Algebra, 2002, 168(2–3): 189–208

[6]

Bruguières A, Virelizier A. Hopf monads. Adv. Math., 2007, 215(2): 679–733

[7]

Bruguières A, Virelizier A. Hopf monads on monoidal categories. Adv. Math., 2011, 227(2): 745–800

[8]

Mesablishvili B, Wisbauer R. Bimonads and Hopf Monads on Categories. J. K-theory, 2011, 7(2): 349–388

[9]

Böhm G, Brzezi`nski T, Wisbauer R. Monads and comands on module categories. J. Algebra, 2009, 322(5): 1719–1747

[10]

Power J, Watanabe H. Combining a monad and a comonad. Theor. Comput. Sci., 2002, 280(1–2): 137–162

[11]

Wang D G, Dai R X. Entwining structures of monads and comonads. Acta Mathematica Sinica, Chinese Series, 2008, 51(5): 927–932 (in Chinese)

[12]

Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras. Comm Algebra, 2011, 39: 2216–2240

[13]

Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using q-derivations. J. Algebra, 2006, 295: 314–361

[14]

Hu N H. q-Witt algebras, q-Lie algebras, q-holomorph structure and representations. Algebra Colloq., 1999, 6(1): 51–70

[15]

Makhlouf A, Silvestrov S. Hom-algebras structures. J. Gen. Lie Theory Appl., 2008, 2: 51–64

[16]

Yau D. Hom-quantum groups I: Quasitriangular Hom-bialgebras. J. Phys. A, 2012, 45(6): 065203

[17]

Makhlouf A, Silvestrov S. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. Generalized Lie theory in Mathematics. Physics and Beyond. Springer-Verlag, Berlin, 2008, Chp 17, 189–206

[18]

Wang Z W, Chen Y Y, Zhang L Y. The antipode and Drinfel’d double of Hom-Hopf algebras (in Chinese). Sci Sin Math, 2012, 42(11): 1079–1093

[19]

Frégier Y, Gohr A. On Hom-type algebras. J. Gen. Lie Theory Appl., 2010, 4: 1–16

[20]

Rafel M. Separable functors revisited. Comm. Algebra, 1990, 18: 1445–1459

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (234KB)

651

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/