Computation of the cohomology rings of Kac-Moody groups, their flag manifolds and classifying spaces

Xu-an ZHAO

Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 437 -454.

PDF (232KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 437 -454. DOI: 10.1007/s11464-022-1016-z
SURVEY ARTICLE
SURVEY ARTICLE

Computation of the cohomology rings of Kac-Moody groups, their flag manifolds and classifying spaces

Author information +
History +
PDF (232KB)

Abstract

In this paper we introduce the history and present situation of the computation of the cohomology rings of Kac-Moody groups, their flag manifolds and classifying spaces, and give some problems and conjectures that deserve further study.

Keywords

Kac-Moody groups / flag manifolds / classifying spaces / cohomology rings / spectral sequences

Cite this article

Download citation ▾
Xu-an ZHAO. Computation of the cohomology rings of Kac-Moody groups, their flag manifolds and classifying spaces. Front. Math. China, 2022, 17(3): 437-454 DOI:10.1007/s11464-022-1016-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams J F. Lectures on Exceptional Lie Groups. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press, 1996

[2]

Aguadé J, Broto C, Kitchloo N, Saumell L. Cohomology of classifying spaces of central quotients of rank two Kac-Moody groups. J Math Kyoto Univ, 2005, 45(3): 449–488

[3]

Araki S. Cohomology modulo 2 of the compact exceptional groups E6 and E7. J Math Osaka City University, 1961, 12(1/2): 43–65

[4]

Araki S, Shikata Y. Cohomology mod 2 of the compact exceptional group E8. Proc Japan Acad, 1961, 37: 619–622

[5]

Araki S. Differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E7 and E8, Ann of Math, 1961, 73(2): 404–436

[6]

Baum P F, Browder W. The cohomology of quotients of classical groups. Topology, 1965, 3: 305–336

[7]

Bernstein I N, Gel’fand I M, Gel’fand S I. Schubert cells and cohomology of the spaces G/P. Russian Math Surveys, 1973, 28(3): 1–26

[8]

Borel A. Sur la cohomologie des espaces fibres principaux et des espaces homogénes de groupes de Lie compacts. Ann of Math, 1953, 57(2): 115–207 (in French)

[9]

Borel A. Homology and cohomology of compact connected Lie groups. Proc Nat Acad Sci, 1953, 39: 1142–1146

[10]

Borel A. Sur l’homologie et la cohomologie des groupes de Lie compacts connexes. Amer J Math, 1954, 76: 273–342 (in French)

[11]

Bott R, Samelson H. The cohomology ring of G/T, Proc Nat Acad Sci, 1955, 41: 490–493

[12]

Bott R. An application of the Morse theory to the topology of Lie groups. Bull Soc Math, 1956, 84: 251–281

[13]

Bott R. The space of loops on a Lie group. Michigan Math J, 1958, 5: 35–61

[14]

Bott R, Loring W T. Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, New York: Springer-Verlag, 1982, 82

[15]

Broto C, Kitchloo N. Classifying spaces of Kac-Moody groups. Math Z, 2002, 240(3): 621–649

[16]

Cartan E. La topologie des groupes de Lie. L’Enseignement Math, 1936, 35: 177–200 (in French)

[17]

Castellana N, Kitchloo N. A homotopy construction of the adjoint representation for Lie groups. Math Proc Cambridge Philos Soc, 2002, 133(3): 399–409

[18]

Chevalley C. Invariants of finite groups generated by reflections. Amer J Math, 1955, 77: 778–782

[19]

Chevalley C. Sur les décompositions cellulaires des espaces G/B. In: Algebraic Groups and Their Generalizations: Classical Methods, Proc Symp in Pure Math, Providence, RI: AMS, 1994, 56(1), 1–26 (in French)

[20]

Demazure M. Désingularisation des variétés de Schubert généralisées. Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I Ann Sci École Norm Sup, 1974, 7(4): 53–88 (in French)

[21]

Duan H B. Multiplicative rule of Schubert classes. Invent Math, 2005, 159(2): 407–436

[22]

Duan H B. The near-Hopf ring structure on the integral cohomology of 1-connected Lie groups. 2010, arXiv: 1008.4897

[23]

Duan H B. Schubert calculus and cohomology of Lie groups, Part II, Compact Lie groups. 2015, arXiv: 1502.00410

[24]

Duan H B. The characteristic classes and Weyl invariants of Spinor groups. 2018, arXiv: 1810.03799

[25]

Duan H B, Zhao X A. The classification of cohomology endomorphisms of certain flag manifolds. Pacific J Math, 2000, 192(1): 93–102

[26]

Duan H B, Zhao X Z. Schubert calculus and cohomology of Lie groups, Part I, 1-connected Lie groups. 2007, arXiv: 0711.2541

[27]

Duan H B, Zhao X Z. Schubert calculus and the Hopf algebra structures of exceptional Lie groups. Forum Math, 2014, 26(1): 113–139

[28]

Duan H B, Zhao X Z. Schubert presentation of the cohomology ring of flag manifolds G/T. J Comput Math, 2015, 18(1): 489–506

[29]

Hopf H. Über die topologie der gruppen-mannigfaltigkeiten und libre verallgemeinerungen. Ann of Math, 1941, 42(2): 22–52 (in German)

[30]

Husemoller D. Fibre Bundles, Second Edition. Graduate Texts in Mathematics, New York: Springer-Verlag, 1975, 20

[31]

Jin C H, Zhao X A. On the Poincaré series of Kac-Moody Lie algebras. 2012, arXiv: 1210.0648v1

[32]

Kac V G. Simple irreducible graded Lie algebras of finite growth. Izv Akad Nauk SSSR Ser Mat, 1968, 32: 1323–1367 (in Russian)

[33]

Kac V G. Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1982

[34]

Kac V G. Constructing groups associated to infinite dimensionl Lie algebras, in Infinite Dimensional Groups with Applications. Berkeley, Calif, 1984, Math Sci Res Inst Publ, New York: Springer, 1985, 4, 167–216

[35]

Kac V G. Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups. Invent Math, 1985, 80(1): 69–79

[36]

Kac V G, Peterson D H. Regular functions on certain infinite-dimensional group. In: Arithmetic and Geometry, Vol II, Progr Math, Vol 36, Boston, MA: Birkhäuser, 1983, 141–166

[37]

Kac V G, Peterson D H. Defining relations of certain infinite-dimensional groups. In: The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque, Numéro Hors Série, 1985, 165–208

[38]

Kac V G, Peterson D H. Generalized invariants of groups generated by reflections. In: Geometry Today (Rome, 1984), Progr Math, Vol 60, Boston, MA: Birkhäuser, 1985, 231–249

[39]

Kitchloo N. Topology of Kac-Moody groups. Ph.D. Thesis, Cambridge, MA: Massachusetts Institute of Technology, 1998

[40]

Kitchloo N. On the topology of Kac-Moody groups. Math Z, 2014, 276(3/4): 727–756

[41]

Kitchloo N. On some applications of unstable Adams operations to the topology of Kac-Moody groups. Proc Amer Math Soc, 2017, 145(2): 915–924

[42]

Kleiman S L. Rigorous foundations of Schubert’s enumerative calculus. In: Mathematical Developments Arising from Hilbert Problems, Proc Sympos Pure Math, Vol 28, Providence, RI: AMS, 1976, 445–482

[43]

Kleiman S L. Intersection theory and enumerative geometry: A decade in review. In: Algebraic Geometry (Bowdoin 1985), Proc Sympos Pure Math, Vol 46, Providence, RI: AMS, 1987, 321–370

[44]

Kono A, Mimura M. Cohomology mod 2 of the classifying space of the compact connected Lie group of type E6. J Pure Appl Algebra 1975, 6(1): 61–81

[45]

Kono A, Mimura M. Cohomology mod 3 of the classifying space of the Lie group E6, Math Scand, 1980, 46(2): 225–235

[46]

Kono A, Mimura M, Shimada N. On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E7. J Pure Appl Algebra 1976, 8(3): 267–283

[47]

Kono A, Kozima K. Homology of the Kac-Moody Lie groups, I. J Math Kyoto Univ, 1989, 29(3): 449–453

[48]

Kono A, Kozima K. Homology of the Kac-Moody Lie groups, II. J Math Kyoto Univ, 1991, 31(1): 165–170

[49]

Kono A, Kozima K. Homology of the Kac-Moody Lie groups, III. J Math Kyoto Univ, 1991, 31(4): 1115–1120

[50]

Kostant B. Lie algebra cohomology and generalized Schubert cells. Ann of Math, 1963, 77(2): 72–144

[51]

Kostant B, Kumar S. T-equivariant K-theory of generalized flag varieties. Proc Nat Acad Sci, 1987, 84(13): 4351–4354

[52]

Kostant B, Kumar S. The nil-Hecke ring and cohomology of G/P for a Kac-Moody group G. Adv Math, 1986, 62(3): 187–237

[53]

Kumar S. Rational homotopy theory of flag varieties associated to Kac-Moody groups. In: Infinite-dimensional Groups with Applications, Berkeley, Calif, 1984, Math Sci Res Inst Publ, New York: Springer, 1985, 4, 233–273

[54]

Kumar S. Kac-Moody groups, their flag varieties and representation theory. Progress in Mathematics, Boston, MA: Birkhäuser, 2002, 204

[55]

Lakshmibai V, Gonciulea N. Flag varieties. Hermann-Actualités Mathématiques, Hermann, 2001

[56]

Leray J. Sur l’homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux. In Colloque de topologie (espacefibrés), Bruxelles, 1950, Liège: Georges Thone, 1951, 101–115 (in French)

[57]

Milnor J W, Moore J C. On the structure of Hopf algebras. Ann of Math, 1965, 81(2): 211–264

[58]

Mimura M, Sambe Y. On the cohomology mod p of the classifying spaces of the exceptional Lie groups I, II, III. J Math Kyoto Univ, 1979, 19(3): 553–581; 1980, 20(2): 327–379

[59]

Mimura M, Toda H. Topology of Lie Groups, I, II. Translated from the 1978 Japanese edition by the authors, Translations of Mathematical Monographs, Providence, RI: AMS, 1991, Vol 91

[60]

Mimura M, Sambe Y, Tezuka M. Cohomology mod 3 of the classifying space of the exceptional Lie group E6, I: structure of Cotor, 2011, arXiv: 1112.5811; II: The Weyl group invariants, 2012, arXiv: 1201.3414

[61]

Moody R V. A new class of Lie algebras. J Algebra, 1968, 10: 211–230

[62]

Nakagawa M. The integral cohomology ring of E7/T. J Math Kyoto Univ, 2001, 41(2): 303–321

[63]

Nakagawa M. The integral cohomology ring of E8/T. Proc Japan Acad Ser A Math Sci, 2010, 86(3): 64–68

[64]

Pittie H V. The integral homology and cohomology rings of SO(n) and Spin(n). J Pure Appl Algebra 1991, 73(2): 105–153

[65]

Pontryagin L S. Sur les nombres de Betti des groupes de Lie. C R Acad Sci Paris, 1935, 200: 1277–1280 (in French)

[66]

Pontrjagin L S. Homologies in compact Lie groups. Rec Math N S, 1939, 48(6): 389–422

[67]

Rothenberg M, Steenrod N E. The cohomology of classifying spaces of H-spaces. Bull Amer Math Soc, 1965, 71: 872–875

[68]

Ruan Y Y, Zhao X A. Cohomology of classifying spaces of rank 3 Kac-Moody groups, in preparation

[69]

Schubert H. Kalkül der abzählenden Geometrie. Berlin: Springer-Verlag, 1979 (in German)

[70]

Schubert H. Anzahl-Bestimmungen für Lineare Räme, Beliebiger dimension. Acta Math, 1886, 8(1): 97–118 (in German)

[71]

Toda H. Cohomology mod 3 of the classifying space BF4 of the exceptional group F4. J Math Kyoto Univ, 1973, 13: 97–115

[72]

Toda H. Cohomology of the classifying space of exceptional Lie groups. In: Manifolds–Tokyo, 1973, Tokyo: Univ Tokyo Press, 1975, 265–271

[73]

Toda H, Watanabe T. The integral cohomology ring of F4/T and E6/T, J Math Kyoto Univ, 1974, 14: 257–286

[74]

Wang R. Polynomial invariants of affine Weyl groups. Master Thesis, Beijing: Beijing Normal University, 2019

[75]

Weil A. Foundations of Algebraic Geometry. Providence, RI: AMS, 1962

[76]

Whitehead G W. Elements of Homotopy Theory. New York: Springer-Verlag, 1978

[77]

Yen C T. Sur les polynomes de Poincaré des groupes de Lie exceptionnels. C R Acad Sci Paris, 1949, 228: 628–630 (in French)

[78]

Yang T. The cohomology of classifying spaces of rank 2 Kac-Moody groups. Master Thesis, Beijing: Beijing Normal University, 2017

[79]

Zhao X A, Jin C H. Polynomial invariants of Weyl groups for Kac-Moody groups. Pacific J Math, 2014, 269(2): 491–509

[80]

Zhao X A, Jin C H, Zhang J M. Poincaré series and rational homotopy types of Kac- Moody groups and their flag manifolds. Ann Math Ser A, 2017, 38(4): 461–468 (in Chinese)

[81]

Zhao X A, Gao H Z. The rational cohomology Hopf algebra of a generic Kac-Moody group. 2018, arXiv: 1804.05491

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (232KB)

735

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/