Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces

Pengtao LI , Wenchang SUN

Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 373 -435.

PDF (514KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 373 -435. DOI: 10.1007/s11464-022-1015-0
SURVEY ARTICLE
SURVEY ARTICLE

Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces

Author information +
History +
PDF (514KB)

Abstract

In this survey, we give a neat summary of the applications of the multi-resolution analysis to the studies of Besov-Q type spaces B ˙ p,q γ1,γ2(n) and Triebel-Lizorkin-Q type spaces B˙p, qγ1, γ2( n). We will state briefly the recent progress on the wavelet characterizations, the boundedness of Calderón-Zygmund operators, the boundary value problem of B ˙ p,q γ1,γ2(n) and F ˙ p,q γ1,γ2(n). We also present the recent developments on the well-posedness of fluid equations with small data in B˙p, qγ1, γ2( n) and F ˙p ,qγ1,γ2( n).

Keywords

Multiresolution analysis / regular wavelet / Besov-Q type spaces / Triebel-Lizorkin-Q type spaces

Cite this article

Download citation ▾
Pengtao LI, Wenchang SUN. Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces. Front. Math. China, 2022, 17(3): 373-435 DOI:10.1007/s11464-022-1015-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BaoG, WulanH. QK spaces of several real variables. Abstr Appl Anal, 2014, 2014: 1–14

[2]

BeylkinG, Coifman R, RokhlinV. Fast wavelet transforms and numerical algorithms I. Commun Pure Appl Math, 1991, 44: 141–183

[3]

BuiH-Q. Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J Funct Anal, 1984, 55: 39–62

[4]

BuiH-Q. Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz. Hiroshima Math J, 1979, 9: 245–295

[5]

CannoneM. A generalization of a theorem by Kato on Navier-Stokes equations. Rev Math Ibero, 1997, 13: 673–97

[6]

CannoneM. Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in: S. Friedlander, D. Serre (Eds.), Handbook of Mathematical Fluid Dynamics, Elsevier, 2004, 3: 161–44

[7]

ChuiC. An Introduction on Wavelets, 1992, New York: Academic Press

[8]

CoifmanR, JonesP, SemmesS. Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves. J Amer Math Soc, 1989, 2: 553–564

[9]

CuiL, YangQ. On the generalized Morrey spaces. Siberian Math J, 2005, 46: 133–141

[10]

DafniG, XiaoJ. Some new tent spaces and duality theorem for fractional Carleson measures and Qα(ℝ n). J Funct Anal, 2004, 208: 377–422

[11]

DafniG, XiaoJ. The dyadic structure and atomic decomposition of Q spaces in several real variables. Tohoku Math J, 2005, 57: 119–145

[12]

DahlbergB. Poisson semigroups and singular integrals. Proc Amer Math Soc, 1986, 97: 41–48

[13]

DaubechiesI. Ten Lectures on Wavelets. Siam, 1992, 61

[14]

DavidG. Opérateurs intégraux singuliers sur certains courbes du plan complexe. Ann Sci École Norm Sup, 1984, 17: 157–189

[15]

DavidG. Wavelets, Calderón-Zygmund operators, and singular integrals on curves and surfaces. Proceedings of the Special Year on Harmonic Analysis at Nankai Institute of Mathematics, Tanjin, China, Lecture Notes in Mathematics, Springer-Verlag, Berlin

[16]

DavidG, Journé J-L. A boundedness criterion for generalized Calderón-Zygmund operators. Ann Math, 1984, 120: 371–397

[17]

DavidG, Journé J-L, SemmesS. Opérateurs de Calderón-Zygmund, fonctions paraaccr étives et interpolation. Rev Math Iberoame, 1985, 1: 1–56

[18]

DavidG, Journé J-L, SemmesS. Opérateurs de Caldéron-Zygmund sur les espaces de nature homogène, preprint

[19]

DengD, YanL, YangQ. Blocking analysis and T (1) theorem. Sci China Math, 1998, 41: 801–808

[20]

EdwardsR, GaudryG. Littlewood-Paley and multiplier Theory. Springer-Verlag, 1977, Berlin-Heigelberg, New York

[21]

EssénM, JansonS, PengL, Xiao J. Q spaces of several real variables. Indiana Univ Math J, 2000, 49: 575–615

[22]

FabesE, NeriU. Characterization of temperatures with initial data in BMO. Duke Math J, 1975, 42: 725–734

[23]

FabesE, NeriU. Dirichlet problem in Lipschitz domains with BMO data. Proc Amer Math Soc, 1980, 78: 33–39

[24]

FabesE, Johnson R, NeriU. Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ Math J, 1976, 25: 159–170

[25]

FlettT. Temperatures, Bessel potentials and Lipschitz spaces. Proc London Math Soc, 1971, 22: 385–451

[26]

FrazierM, Jawerth B, WeissG. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg. Conf. Ser. Math., vol. 79, Amer. Math. Soc., Providence, RI, 1991

[27]

FrazierM, HanY, JawerthB, Weiss G. The T(1) theorem for Triebel-Lizorkin spaces. Proc. Conf. Harmonic Analysis and PDE, El Escorial, 1987, J. Garcia-Cuerva et. al. eds, Lecture Notes in Math., 1384, Springer-Verlag, 168–181

[28]

FrazierM, TorresR, WeissG. The boundedness of Calderón-Zygmund Operators on the spaces F ˙p αq. Revista Mat Ibero, 1988, 4: 41–72

[29]

GermainP, Pavlović N, StaffilaniG. Regularity of solutions to the Naiver.Stokes equations evolving from small data in BMO−1. Int Math Res Not, 2007, 2007

[30]

GigaY, Miyakawa T. Navier-Stokes flow in ℝ3 with measures as initial vorticity and Morry spaces. Comm Partial Differ Equ, 1989, 14: 577–618

[31]

HanF, LiP. Characterizations for a class of Q-type spaces of several real variables. Adv Math (China), 2020, 49: 195–214

[32]

HanF, LiP. Harmonic extension of Qk type spaces via regular wavelets. Complex Vair Ellipt Equ, 2020, 65: 2008–2025

[33]

HanF, LiP. Extension of Besov-Q type spaces via convolution operators with applications. Complex Anal Oper Theory, 2020, 14

[34]

HanY, Hofmann S. T1 theorems for Besov and Triebel-Lizorkin spaces. Trans Amer Math Soc, 1993, 337: 839–853

[35]

HanY, Jawerth B, TaiblesonM, WeissG. Littlewood-Paley theory and ε-families of operators. Coll Math, 1990, 60–61: 321–359

[36]

KatoT. Strong Lp-solutions of the Navier-Stokes in ℝn with applications to weak solutions. Math Z, 1984, 187: 471–480

[37]

KatoT, FujitaH. On the non-stationary Navier-Stokes system. Rend Semin Mat Univ Padova, 1962, 30: 243–260

[38]

KochH, TataruD. Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157: 22–35

[39]

LauK, YanL. Wavelet decomposition of Caldern-Zygmund operators on function spaces. J Australian Math Soc, 2004, 77: 29–46

[40]

LemarieP. Continuité sur les espaces de Besov des opérateurs définis par des intégrales singuliéres. Annales de línstitut Fourier, 1985, 35: 175–187

[41]

LiP, LiuH, PengL, Yang Q. Pseudo-annular decomposition and approximate rate of Calderon-Zygmund operators on Heisenberg group. Inter J Wavelets Multi Inform Proc, 2015, 13, 1550001

[42]

LiP, PengL. Poisson semigroup characterization and the trace theorem of a class of fractional mean oscillation spaces. Math Methods Appl Sci, 2018, 41: 3463–3475

[43]

LiP, XiaoJ, YangQ. Global mild solutions of modified Navier-Stokes equations with small initial data in critical Besov-Q spaces. Electronic J Differ Equ, 2014, 2014: 1–37

[44]

LiP, YangQ. Bilinear estimate on tent type spaces with application to the wellposedness of fluid equations. Math Meth Appl Sci, 2016, 39: 4099–4128

[45]

LiP, YangQ. Wavelets and the well-posedness of incompressible magneto-hydrodynamic equations in Besov type Q-spaces. J Math Anal Appl, 2013, 405: 661–686

[46]

LiP, YangQ. Well-posedness of quasi-geostrophic equations with data in Besov-Q spaces. Nonlinear Analysis TMA, 2014, 94: 243–258

[47]

LiP, YangQ, ZhaoK. Regular wavelets and Triebel-Lizorkin type oscillation spaces. Math Meth Appl Sci, 2017, 40: 6684–6701

[48]

LiP, ZhaiZ. Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces. J Funct Anal, 2010, 259: 2457–2519

[49]

LiP, ZhaiZ. Riesz transforms on Q-type spaces with application to quasi-geostrophic equation. Taiwanese J Math, 2012, 16: 2107–2132

[50]

LiangY, SawanoY, UllrichT, Yang D, YuanW. New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets J Fourier Anal Appl, 2012, 18: 1067–1111

[51]

LinC, YangQ. Semigroup characterization of Besov type Morrey spaces and wellposedness of generalized Navier-Stokes equations. J Differ Equ, 2013, 254: 804–846

[52]

LionsJ. Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Dunod/Gauthier. Villars, 1969, Paris

[53]

LiuH, LiuY. Convergence of cascade sequence on the Heisenberg group. Proc Amer Math Soc, 2006, 134: 1413–1423

[54]

MallatS. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989, 7: 674–693

[55]

MeyerY. Ondelettes et Opérateurs, I et II. Hermann, 1991–1992, Paris

[56]

MeyerY, YangQ. Continuity of Calderón-Zygmund operators on Besov or Triebel-Lizorkin spaces. Anal Appl (Singap.), 2008, 6: 51–81

[57]

MiaoC, YuanB, ZhangB. Well-posedness for the incompressible magneto-hydrodynamic system. Math Methods Appl Sci, 2007, 30: 961–976

[58]

NicolauA, XiaoJ. Bounded functions in Möbius invariant Dirichlet spaces. J Funct Anal, 1997, 150: 383–425

[59]

PeetreJ. New thoughts on Besov spaces. Duke Univ. Math. Ser., 1976, Duke Univ Press, Durham

[60]

RicciF, Taibleson M. Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Annali Della Scuola Normale Superiore di pisa Class di Scienze, 1983, 10: 1–54

[61]

SteinE M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970, Princeton, N. J

[62]

SteinE M. Singular integrals, harmonic functions, and differentiability properties of functions of several variables. Proc Symp Pure Math, 1967, 10: 316–335

[63]

SteinE. M. Harmonic analysis–Real variable methods, orthogonality, and integrals. Princeton University Press, 1993

[64]

SteinE M, WeissG. Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, 1971, Princeton, NJ

[65]

StrichartzR. Bounded mean oscillation and Sobolev spaces. Indiana Univ Math J, 1980, 29: 539–558

[66]

StrichartzR. Traces of BMO-Sobolev spaces. Proc Amer Math Soc, 1981, 83: 509–513

[67]

TaiblesonM, WeissG. The molecular characterization of certain Hardy spaces. Asterisque, 1980, 77: 67–151

[68]

WangY, XiaoJ. Homogeneous Campanato-Sobolev classes. Appl Comput Harmon Anal, 2014, 39: 214–247

[69]

WuJ. Generalized MHD equations. J Differ Equ, 2003, 195: 284–312

[70]

WuJ. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Differ Equ, 2004, 1: 381–400

[71]

WuJ. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2005, 263: 803–831

[72]

WuJ. Regularity criteria for the generalized MHD equations. Comm Partial Differ Equ, 2008, 33: 285–306

[73]

WuZ, XieC. Decomposition theorems for Qp spaces. Ark Mat, 2002, 40: 383–401

[74]

XiaoJ. Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn Partial Differ Equ, 2007, 2: 227–245

[75]

YangD, YuanW. A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces. J Funct Anal, 2008, 255: 2760–2809

[76]

YangD, YuanW. Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal, 2010, 73: 3805–3820

[77]

YangQ. Fast algorithms for Calderón-Zygmund singular integral operators. Appl Comput Harmonic Anal, 1996, 3: 120–126

[78]

YangQ. Wavelet and Distribution. Chinese edition, 2002, Beijing Science and Technology Press

[79]

YangQ, LiP. Regular orthogonal basis on Heisenberg group and application to function spaces. Math Meth Appl Sci, 2015, 38: 3163–3182

[80]

YangQ, LiP. Regular wavelets, heat semigroup and application to the magnetohydrodynamic equations with data in critical Triebel-Lizorkin type oscillation spaces. Taiwanese J Math, 2016, 20: 1335–1376

[81]

YangQ, QianT, LiP. Spaces of harmonic functions with boundary values in Qp,qα. Applicable Analysis, 2014, 93: 2498–2518

[82]

YangQ, YanL, DengD. On Hörmander condition. Chinese Science Bulletin, 1997, 42: 1341–1345

[83]

Yosida,K. Functional Analysis, 1965, Springer-Verlag, Berlin

[84]

YuanW, SickelW, YangD. Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2010, 2005, Springer Heidelberg Dordrecht London New York, 2010

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (514KB)

895

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/