Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces

Pengtao LI, Wenchang SUN

PDF(514 KB)
PDF(514 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (3) : 373-435. DOI: 10.1007/s11464-022-1015-0
SURVEY ARTICLE
SURVEY ARTICLE

Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces

Author information +
History +

Abstract

In this survey, we give a neat summary of the applications of the multi-resolution analysis to the studies of Besov-Q type spaces B ˙ p,q γ1,γ2(n) and Triebel-Lizorkin-Q type spaces B˙p, qγ1, γ2( n). We will state briefly the recent progress on the wavelet characterizations, the boundedness of Calderón-Zygmund operators, the boundary value problem of B ˙ p,q γ1,γ2(n) and F ˙ p,q γ1,γ2(n). We also present the recent developments on the well-posedness of fluid equations with small data in B˙p, qγ1, γ2( n) and F ˙p ,qγ1,γ2( n).

Keywords

Multiresolution analysis / regular wavelet / Besov-Q type spaces / Triebel-Lizorkin-Q type spaces

Cite this article

Download citation ▾
Pengtao LI, Wenchang SUN. Applications of multiresolution analysis in Besov-Q type spaces and Triebel-Lizorkin-Q type spaces. Front. Math. China, 2022, 17(3): 373‒435 https://doi.org/10.1007/s11464-022-1015-0

References

[1]
BaoG, WulanH. QK spaces of several real variables. Abstr Appl Anal, 2014, 2014: 1–14
CrossRef Google scholar
[2]
BeylkinG, Coifman R, RokhlinV. Fast wavelet transforms and numerical algorithms I. Commun Pure Appl Math, 1991, 44: 141–183
CrossRef Google scholar
[3]
BuiH-Q. Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures. J Funct Anal, 1984, 55: 39–62
CrossRef Google scholar
[4]
BuiH-Q. Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz. Hiroshima Math J, 1979, 9: 245–295
CrossRef Google scholar
[5]
CannoneM. A generalization of a theorem by Kato on Navier-Stokes equations. Rev Math Ibero, 1997, 13: 673–97
CrossRef Google scholar
[6]
CannoneM. Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in: S. Friedlander, D. Serre (Eds.), Handbook of Mathematical Fluid Dynamics, Elsevier, 2004, 3: 161–44
CrossRef Google scholar
[7]
ChuiC. An Introduction on Wavelets, 1992, New York: Academic Press
CrossRef Google scholar
[8]
CoifmanR, JonesP, SemmesS. Two elementary proofs of the L2 boundedness of Cauchy integrals on Lipschitz curves. J Amer Math Soc, 1989, 2: 553–564
CrossRef Google scholar
[9]
CuiL, YangQ. On the generalized Morrey spaces. Siberian Math J, 2005, 46: 133–141
CrossRef Google scholar
[10]
DafniG, XiaoJ. Some new tent spaces and duality theorem for fractional Carleson measures and Qα(ℝ n). J Funct Anal, 2004, 208: 377–422
CrossRef Google scholar
[11]
DafniG, XiaoJ. The dyadic structure and atomic decomposition of Q spaces in several real variables. Tohoku Math J, 2005, 57: 119–145
CrossRef Google scholar
[12]
DahlbergB. Poisson semigroups and singular integrals. Proc Amer Math Soc, 1986, 97: 41–48
CrossRef Google scholar
[13]
DaubechiesI. Ten Lectures on Wavelets. Siam, 1992, 61
CrossRef Google scholar
[14]
DavidG. Opérateurs intégraux singuliers sur certains courbes du plan complexe. Ann Sci École Norm Sup, 1984, 17: 157–189
CrossRef Google scholar
[15]
DavidG. Wavelets, Calderón-Zygmund operators, and singular integrals on curves and surfaces. Proceedings of the Special Year on Harmonic Analysis at Nankai Institute of Mathematics, Tanjin, China, Lecture Notes in Mathematics, Springer-Verlag, Berlin
[16]
DavidG, Journé J-L. A boundedness criterion for generalized Calderón-Zygmund operators. Ann Math, 1984, 120: 371–397
CrossRef Google scholar
[17]
DavidG, Journé J-L, SemmesS. Opérateurs de Calderón-Zygmund, fonctions paraaccr étives et interpolation. Rev Math Iberoame, 1985, 1: 1–56
CrossRef Google scholar
[18]
DavidG, Journé J-L, SemmesS. Opérateurs de Caldéron-Zygmund sur les espaces de nature homogène, preprint
[19]
DengD, YanL, YangQ. Blocking analysis and T (1) theorem. Sci China Math, 1998, 41: 801–808
CrossRef Google scholar
[20]
EdwardsR, GaudryG. Littlewood-Paley and multiplier Theory. Springer-Verlag, 1977, Berlin-Heigelberg, New York
CrossRef Google scholar
[21]
EssénM, JansonS, PengL, Xiao J. Q spaces of several real variables. Indiana Univ Math J, 2000, 49: 575–615
CrossRef Google scholar
[22]
FabesE, NeriU. Characterization of temperatures with initial data in BMO. Duke Math J, 1975, 42: 725–734
CrossRef Google scholar
[23]
FabesE, NeriU. Dirichlet problem in Lipschitz domains with BMO data. Proc Amer Math Soc, 1980, 78: 33–39
CrossRef Google scholar
[24]
FabesE, Johnson R, NeriU. Spaces of harmonic functions representable by Poisson integrals of functions in BMO and Lp,λ. Indiana Univ Math J, 1976, 25: 159–170
CrossRef Google scholar
[25]
FlettT. Temperatures, Bessel potentials and Lipschitz spaces. Proc London Math Soc, 1971, 22: 385–451
CrossRef Google scholar
[26]
FrazierM, Jawerth B, WeissG. Littlewood-Paley Theory and the Study of Function Spaces. CBMS Reg. Conf. Ser. Math., vol. 79, Amer. Math. Soc., Providence, RI, 1991
CrossRef Google scholar
[27]
FrazierM, HanY, JawerthB, Weiss G. The T(1) theorem for Triebel-Lizorkin spaces. Proc. Conf. Harmonic Analysis and PDE, El Escorial, 1987, J. Garcia-Cuerva et. al. eds, Lecture Notes in Math., 1384, Springer-Verlag, 168–181
CrossRef Google scholar
[28]
FrazierM, TorresR, WeissG. The boundedness of Calderón-Zygmund Operators on the spaces F ˙p αq. Revista Mat Ibero, 1988, 4: 41–72
CrossRef Google scholar
[29]
GermainP, Pavlović N, StaffilaniG. Regularity of solutions to the Naiver.Stokes equations evolving from small data in BMO−1. Int Math Res Not, 2007, 2007
CrossRef Google scholar
[30]
GigaY, Miyakawa T. Navier-Stokes flow in ℝ3 with measures as initial vorticity and Morry spaces. Comm Partial Differ Equ, 1989, 14: 577–618
CrossRef Google scholar
[31]
HanF, LiP. Characterizations for a class of Q-type spaces of several real variables. Adv Math (China), 2020, 49: 195–214
[32]
HanF, LiP. Harmonic extension of Qk type spaces via regular wavelets. Complex Vair Ellipt Equ, 2020, 65: 2008–2025
CrossRef Google scholar
[33]
HanF, LiP. Extension of Besov-Q type spaces via convolution operators with applications. Complex Anal Oper Theory, 2020, 14
CrossRef Google scholar
[34]
HanY, Hofmann S. T1 theorems for Besov and Triebel-Lizorkin spaces. Trans Amer Math Soc, 1993, 337: 839–853
CrossRef Google scholar
[35]
HanY, Jawerth B, TaiblesonM, WeissG. Littlewood-Paley theory and ε-families of operators. Coll Math, 1990, 60–61: 321–359
CrossRef Google scholar
[36]
KatoT. Strong Lp-solutions of the Navier-Stokes in ℝn with applications to weak solutions. Math Z, 1984, 187: 471–480
CrossRef Google scholar
[37]
KatoT, FujitaH. On the non-stationary Navier-Stokes system. Rend Semin Mat Univ Padova, 1962, 30: 243–260
[38]
KochH, TataruD. Well-posedness for the Navier-Stokes equations. Adv Math, 2001, 157: 22–35
CrossRef Google scholar
[39]
LauK, YanL. Wavelet decomposition of Caldern-Zygmund operators on function spaces. J Australian Math Soc, 2004, 77: 29–46
CrossRef Google scholar
[40]
LemarieP. Continuité sur les espaces de Besov des opérateurs définis par des intégrales singuliéres. Annales de línstitut Fourier, 1985, 35: 175–187
CrossRef Google scholar
[41]
LiP, LiuH, PengL, Yang Q. Pseudo-annular decomposition and approximate rate of Calderon-Zygmund operators on Heisenberg group. Inter J Wavelets Multi Inform Proc, 2015, 13, 1550001
CrossRef Google scholar
[42]
LiP, PengL. Poisson semigroup characterization and the trace theorem of a class of fractional mean oscillation spaces. Math Methods Appl Sci, 2018, 41: 3463–3475
CrossRef Google scholar
[43]
LiP, XiaoJ, YangQ. Global mild solutions of modified Navier-Stokes equations with small initial data in critical Besov-Q spaces. Electronic J Differ Equ, 2014, 2014: 1–37
[44]
LiP, YangQ. Bilinear estimate on tent type spaces with application to the wellposedness of fluid equations. Math Meth Appl Sci, 2016, 39: 4099–4128
CrossRef Google scholar
[45]
LiP, YangQ. Wavelets and the well-posedness of incompressible magneto-hydrodynamic equations in Besov type Q-spaces. J Math Anal Appl, 2013, 405: 661–686
CrossRef Google scholar
[46]
LiP, YangQ. Well-posedness of quasi-geostrophic equations with data in Besov-Q spaces. Nonlinear Analysis TMA, 2014, 94: 243–258
CrossRef Google scholar
[47]
LiP, YangQ, ZhaoK. Regular wavelets and Triebel-Lizorkin type oscillation spaces. Math Meth Appl Sci, 2017, 40: 6684–6701
CrossRef Google scholar
[48]
LiP, ZhaiZ. Well-posedness and regularity of generalized Navier-Stokes equations in some critical Q-spaces. J Funct Anal, 2010, 259: 2457–2519
CrossRef Google scholar
[49]
LiP, ZhaiZ. Riesz transforms on Q-type spaces with application to quasi-geostrophic equation. Taiwanese J Math, 2012, 16: 2107–2132
CrossRef Google scholar
[50]
LiangY, SawanoY, UllrichT, Yang D, YuanW. New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets J Fourier Anal Appl, 2012, 18: 1067–1111
CrossRef Google scholar
[51]
LinC, YangQ. Semigroup characterization of Besov type Morrey spaces and wellposedness of generalized Navier-Stokes equations. J Differ Equ, 2013, 254: 804–846
CrossRef Google scholar
[52]
LionsJ. Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Dunod/Gauthier. Villars, 1969, Paris
[53]
LiuH, LiuY. Convergence of cascade sequence on the Heisenberg group. Proc Amer Math Soc, 2006, 134: 1413–1423
CrossRef Google scholar
[54]
MallatS. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989, 7: 674–693
CrossRef Google scholar
[55]
MeyerY. Ondelettes et Opérateurs, I et II. Hermann, 1991–1992, Paris
[56]
MeyerY, YangQ. Continuity of Calderón-Zygmund operators on Besov or Triebel-Lizorkin spaces. Anal Appl (Singap.), 2008, 6: 51–81
CrossRef Google scholar
[57]
MiaoC, YuanB, ZhangB. Well-posedness for the incompressible magneto-hydrodynamic system. Math Methods Appl Sci, 2007, 30: 961–976
CrossRef Google scholar
[58]
NicolauA, XiaoJ. Bounded functions in Möbius invariant Dirichlet spaces. J Funct Anal, 1997, 150: 383–425
CrossRef Google scholar
[59]
PeetreJ. New thoughts on Besov spaces. Duke Univ. Math. Ser., 1976, Duke Univ Press, Durham
[60]
RicciF, Taibleson M. Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Annali Della Scuola Normale Superiore di pisa Class di Scienze, 1983, 10: 1–54
[61]
SteinE M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, 1970, Princeton, N. J
CrossRef Google scholar
[62]
SteinE M. Singular integrals, harmonic functions, and differentiability properties of functions of several variables. Proc Symp Pure Math, 1967, 10: 316–335
CrossRef Google scholar
[63]
SteinE. M. Harmonic analysis–Real variable methods, orthogonality, and integrals. Princeton University Press, 1993
[64]
SteinE M, WeissG. Introduction to Fourier Analysis on Euclidean spaces. Princeton University Press, 1971, Princeton, NJ
CrossRef Google scholar
[65]
StrichartzR. Bounded mean oscillation and Sobolev spaces. Indiana Univ Math J, 1980, 29: 539–558
CrossRef Google scholar
[66]
StrichartzR. Traces of BMO-Sobolev spaces. Proc Amer Math Soc, 1981, 83: 509–513
CrossRef Google scholar
[67]
TaiblesonM, WeissG. The molecular characterization of certain Hardy spaces. Asterisque, 1980, 77: 67–151
[68]
WangY, XiaoJ. Homogeneous Campanato-Sobolev classes. Appl Comput Harmon Anal, 2014, 39: 214–247
CrossRef Google scholar
[69]
WuJ. Generalized MHD equations. J Differ Equ, 2003, 195: 284–312
CrossRef Google scholar
[70]
WuJ. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Differ Equ, 2004, 1: 381–400
CrossRef Google scholar
[71]
WuJ. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2005, 263: 803–831
CrossRef Google scholar
[72]
WuJ. Regularity criteria for the generalized MHD equations. Comm Partial Differ Equ, 2008, 33: 285–306
CrossRef Google scholar
[73]
WuZ, XieC. Decomposition theorems for Qp spaces. Ark Mat, 2002, 40: 383–401
CrossRef Google scholar
[74]
XiaoJ. Homothetic variant of fractional Sobolev space with application to Navier-Stokes system. Dyn Partial Differ Equ, 2007, 2: 227–245
CrossRef Google scholar
[75]
YangD, YuanW. A new class of function spaces connecting Triebel-Lizorkin spaces and Q spaces. J Funct Anal, 2008, 255: 2760–2809
CrossRef Google scholar
[76]
YangD, YuanW. Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal, 2010, 73: 3805–3820
CrossRef Google scholar
[77]
YangQ. Fast algorithms for Calderón-Zygmund singular integral operators. Appl Comput Harmonic Anal, 1996, 3: 120–126
CrossRef Google scholar
[78]
YangQ. Wavelet and Distribution. Chinese edition, 2002, Beijing Science and Technology Press
[79]
YangQ, LiP. Regular orthogonal basis on Heisenberg group and application to function spaces. Math Meth Appl Sci, 2015, 38: 3163–3182
CrossRef Google scholar
[80]
YangQ, LiP. Regular wavelets, heat semigroup and application to the magnetohydrodynamic equations with data in critical Triebel-Lizorkin type oscillation spaces. Taiwanese J Math, 2016, 20: 1335–1376
CrossRef Google scholar
[81]
YangQ, QianT, LiP. Spaces of harmonic functions with boundary values in Qp,qα. Applicable Analysis, 2014, 93: 2498–2518
CrossRef Google scholar
[82]
YangQ, YanL, DengD. On Hörmander condition. Chinese Science Bulletin, 1997, 42: 1341–1345
CrossRef Google scholar
[83]
Yosida,K. Functional Analysis, 1965, Springer-Verlag, Berlin
CrossRef Google scholar
[84]
YuanW, SickelW, YangD. Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2010, 2005, Springer Heidelberg Dordrecht London New York, 2010
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(514 KB)

Accesses

Citations

Detail

Sections
Recommended

/