A survey on book-embedding of planar graphs

Xiaxia GUAN, Chuxiong WU, Weihua YANG, Jixiang MENG

PDF(351 KB)
PDF(351 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (2) : 255-273. DOI: 10.1007/s11464-022-1010-5
SURVEY ARTICLE
SURVEY ARTICLE

A survey on book-embedding of planar graphs

Author information +
History +

Abstract

The book-embedding problem arises in several area, such as very large scale integration (VLSI) design and routing multilayer printed circuit boards (PCBs). It can be used into various practical application fields. A book embedding of a graph G is an embedding of its vertices along the spine of a book, and an embedding of its edges to the pages such that edges embedded on the same page do not intersect. The minimum number of pages in which a graph G can be embedded is called the pagenumber or book-thickness of the graph G. It is an important measure of the quality for book-embedding. It is NP-hard to research the pagenumber of book-embedding for a graph G. This paper summarizes the studies on the book-embedding of planar graphs in recent years.

Keywords

Book embedding / planar graphs / pagenumber

Cite this article

Download citation ▾
Xiaxia GUAN, Chuxiong WU, Weihua YANG, Jixiang MENG. A survey on book-embedding of planar graphs. Front. Math. China, 2022, 17(2): 255‒273 https://doi.org/10.1007/s11464-022-1010-5

References

[1]
Alam M J , Brandenburg F J , Kobourov S G . On the book thickness of 1-planar graphs. 2015, arXiv: 1510.05891
[2]
Alam M J , Brandenburg F J , Kobourov S G . Straight-line grid drawings of 3-connected 1-planar graphs. In: Graph Drawing, Lecture Notes in Comput. Sci., Vol. 8242, Cham: Springer, 2013, 83- 94
[3]
Alam M J , Bekos M A , Gronemann M , Kaufmann M , Pupyrev S . . Graph-theoretic Concepts in Computer Science (44th International Workshop, WG 2018, Cottbus, Germany), A. Brandest adt, E. Kohler, K. Meer, Eds., LNCS 11159, (2018) 1- 14, Springer, Cham, Switzerland
[4]
Alam M J , Bekos M A , Gronemann M , Kaufmann M , Pupyrev S . On dispersable book embeddings. Theoret. Comput. Sci., 2021, 861: 1- 22
CrossRef Google scholar
[5]
Alhashem M , Jourdan G V , Zaguia N . On the book embedding of ordered sets. Ars Combin., 2015, 119: 47- 64
[6]
Angelini P , Da Lozzo G , Neuwirth D . Advancements on SEFE and partitioned book embedding problems. Theoret. Comput. Sci., 2015, 575: 71- 89
CrossRef Google scholar
[7]
Atneosen G A . On the Embeddability of Compacta in N-books: Intrinsic and Extrinsic Properties. Ph.D. Thesis, East Lansing, MI: Michigan State University, 1968
[8]
Balogh J , Salazar G . Book embeddings of regular graphs. SIAM J. Discrete Math., 2015, 29 (2): 811- 822
CrossRef Google scholar
[9]
Bekos M A , Bruckdorfer T , Kaufmann M , Raftopoulou C . 1-planar graphs have constant book thickness. In: Algorithms—ESA 2015, Lecture Notes in Comput. Sci., Vol. 9294, Heidelberg: Springer, 2015, 130- 141
[10]
Bekos M A , Gronemann M , Raftopoulou C N . Two-page book embeddings of 4-planar graphs. Algorithmica, 2016, 75 (1): 158- 185
CrossRef Google scholar
[11]
Bekos M A , Kaufmann M , Zielke C . The book embedding problem from a SAT-solving perspective. In: Graph Drawing and Network Visualization, Lecture Notes in Comput. Sci., Vol. 9411, Cham: Springer, 2015, 125- 138
[12]
Bernhart F , Kainen P C . The book thickness of a graph. J. Combin. Theory Ser. B, 1979, 27 (3): 320- 331
CrossRef Google scholar
[13]
Bilski T . Optimum embedding of complete graphs in books. Discrete Math., 1998, 182 (1/2/3): 21- 28
[14]
Buss J F , Shor P W . On the pagenumber of planar graphs. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC ’84), New York, NY: ACM, 1984, 98- 100
[15]
Chen C . Any maximal planar graph with only one separating triangle is hamiltonian. J. Comb. Opim., 2003, 7 (1): 79- 86
CrossRef Google scholar
[16]
Chiba N , Nishizeki T . The hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. J. Algorithms, 1989, 10 (2): 187- 211
CrossRef Google scholar
[17]
Chung F R K , Leighton F T , Rosenberg A L . Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebraic Discrete Methods, 1987, 8 (1): 33- 58
CrossRef Google scholar
[18]
Dujmović V , Wood D R . Graph treewidth and geometric thickness parameters. Discrete Comput. Geom., 2007, 37 (4): 641- 670
CrossRef Google scholar
[19]
Endo T . The pagenumber of toroidal graphs is at most seven. Discrete Math., 1997, 175 (1/2/3): 87- 96
[20]
Enomoto H , Miyauchi M S . Embedding graphs into a three page book with O(M log N) crossings of edges over the spine. SIAM J. Discrete Math., 1999, 12 (3): 337- 341
CrossRef Google scholar
[21]
Enomoto H , Miyauchi M S , Ota K . Lower bounds for the number of edge-crossings over the spine in a topological book embedding of a graph. Discrete Appl. Math., 1999, 92 (2/3): 149- 155
[22]
Enomoto H , Nakamigawa T , Ota K . On the pagenumber of complete bipartite graphs. J. Combin. Theory Ser. B, 1997, 71 (1): 111- 120
CrossRef Google scholar
[23]
Even S , Itai A . Queues, stacks, and graphs. In: Theory of Machines and Computations (Proc. Internat. Sympos., Technion, Haifa, 1971), New York: Academic Press, 1971, 71- 86
[24]
Ewald G . Hamiltonian circuits in simplicial complexes. Geometriae Dedicata, 1973, 2: 115- 125
[25]
Fang J F , Lai K C . Embedding the incomplete hypercube in books. Inform. Process. Lett., 2005, 96 (1): 1- 6
CrossRef Google scholar
[26]
Games R A . Optimal book embeddings of the FFT, benes, and barrel shifter networks. Algorithmica, 1986, 1 (1): 233- 250
[27]
Ganley J L , Heath L S . The pagenumber of k-trees is O(k). Discrete Appl. Math., 2001, 109 (3): 215- 221
CrossRef Google scholar
[28]
Garey M R , Johnson D S , Miller G L , Papadimitriou C H . The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discrete Methods, 1980, 1 (2): 216- 227
CrossRef Google scholar
[29]
Grigoriev A , Bodlaender H L . Algorithms for graphs embeddable with few crossings per edge. Algorithmica, 2007, 49 (1): 1- 11
CrossRef Google scholar
[30]
Guan X X . Book-embedding of Planar Graphs. Master Thesis, Taiyuan: Taiyuan University of Technology, 2019 (in Chinese)
[31]
Guan X X , Yang W H . Embedding planar 5-graphs in three pages. Discrete Appl. Math., 2019, 282: 108- 121
[32]
Hasunuma T , Shibata Y . Embedding de Bruijn, Kautz and shuffle-exchange networks in books. Discrete Appl. Math., 1997, 78 (1/2/3): 103- 116
[33]
Heath L S . Embedding planar graphs in seven pages. In: 25th Annual Symposium on Foundations of Computer Science, New York: IEEE, 1984, 74- 89
[34]
Heath L S . Algorithms for Embedding Graphs in Books. Ph.D. Thesis, Chapel Hill, NC: University of North Carolina, 1985
[35]
Heath L S , Istrail S . The pagenumber of genus g graphs is O(g). J. Assoc. Comput. Mach., 1992, 39 (3): 479- 501
CrossRef Google scholar
[36]
Helden G . Each maximal planar graph with exactly two separating triangles is hamiltonian. Discret. Appl. Mach., 2007, 155 (14): 1833- 1836
CrossRef Google scholar
[37]
Hoffmann M , Klemz B . Triconnected planar graphs of maximum degree five are subhamiltonian. In: 27th Annual European Symposium on Algorithms (ESA 2019) (Bender, M.A., Svensson, O. and Herman, G. eds.), Leibniz International Proceedings in Informatics (LIPIcs), Vol. 144, Dagstuhl: Schloss Dagstuhl—Leibniz-Zentrum für Informatik, 2019, Article 58, 14 pp
[38]
Hwang F K . A survey on multi-loop networks. Theoret. Comput. Sci., 2003, 299 (1/2/3): 107- 121
[39]
Istrail S . An algorithm for embedding planar graphs in six pages. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 1988, 34 (4): 329- 341
[40]
Joslin S S , Kainen P C , Overbay S . On dispersability of some cycle products. Missouri J. Math. Sci., in press, 2021
[41]
Kainen P C . Some recent results in topological graph theory. In: Graphs and Combinatorics. Lecture Notes in Math., Vol. 406, Berlin: Springer, 1974, 76- 108
[42]
Kainen P C . Complexity of products of even cycles. Bull. Inst. Combinatorics and Its Applications, 2011, 62: 95- 102
[43]
Kainen P C , Overbay S . Extension of a theorem of Whitney. Appl. Math. Lett., 2007, 20: 835- 837
CrossRef Google scholar
[44]
Kainen P C , Overbay S . Cubic planar bipartite graphs are dispersable. arXiv: 2107. 4728v1
[45]
Kainen P C , Overbay S . On matching book thickness. in preparation
[46]
Kapoor N , Russell M , Stojmenovic I , Zomaya A Y . A genetic algorithm for finding the pagenumber of interconnection networks. J. Parallel Distrib. Comput., 2002, 62 (2): 267- 283
CrossRef Google scholar
[47]
Kobourov S G , Liotta G , Montecchiani F . An annotated bibliography on 1-planarity. Computer Science Review 25, 2017, 49- 67
[48]
Konoe M , Hagiwara K , Tokura N . On the pagenumber of hypercubes and cube-connected cycles. IEICE Trans., 1988, J71-D (3): 490- 500 (in Japanese)
[49]
Korzhik V P , Mohar B . Minimal obstructions for 1-immersions and hardness of 1-planarity testing. J. Graph Theory, 2013, 72 (1): 30- 71
CrossRef Google scholar
[50]
Kwiatkowska A B . On page number of N-free posets. In: Fifth Cracow Conference on Graph Theory USTRON ’06, Electron. Notes Discrete Math., Vol. 24, Amsterdam: Elsevier Sci. B. V., 2006, 243- 249
[51]
Li X L . Book Embedding of Graphs. Ph.D. Thesis, Zhengzhou: Zhengzhou University, 2002, 72 (1): 243- 249
[52]
Malitz S M . Graphs with E edges have pagenumber O(E). J. Algorithms, 1994, 17 (1): 71- 84
CrossRef Google scholar
[53]
Malitz S M . Genus g graphs have pagenumber O(g). J. Algorithms, 1994, 17: 85- 109
CrossRef Google scholar
[54]
Mitchel S L . Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inform. Process. Lett., 1979, 9 (5): 224- 232
[55]
Moran S , Wolfstahl Y . One-page book embedding under vertex-neighborhood constraints. SIAM J. Discrete Math., 1990, 3 (3): 376- 390
CrossRef Google scholar
[56]
Muder D J , Weaver M L , West D B . Pagenumber of complete bipartite graphs. J. Graph Theory, 1988, 12 (4): 469- 489
CrossRef Google scholar
[57]
Nakamoto A , Nozawa T . Book embedding of locally planar graphs on orientable surfaces. Discrete Math., 2016, 339 (11): 2672- 2679
CrossRef Google scholar
[58]
Nakamoto A , Ozeki K . Book embedding of toroidal bipartite graphs. SIAM J. Discrete Math., 2012, 26 (2): 661- 669
CrossRef Google scholar
[59]
Nowakowski R , Parker A . Ordered sets, pagenumbers and planarity. Order, 1989, 6 (3): 209- 218
CrossRef Google scholar
[60]
Ollmann L T . On the book thicknesses of various graphs. In: Proceedings of the 4th Southeastern Conference on Combinatorics. Graph Theory and Computing, Congressus Numerantium, Vol. VIII, Winnipeg, Man.: Utilitas Mathematica Publishing Inc., 1973 459
[61]
Overbay S . Generalized Book Embeddings. Ph. D. Dissertation, Colorado State University, Fort Collins, CO, 1998
[62]
Pach J , Tóth G . Graphs drawn with few crossings per edge. Combinatorica, 1997, 17 (3): 427- 439
CrossRef Google scholar
[63]
Pupyrev S . Private communication
[64]
Pupyrev S . Book Embeddings of Graph Products. arXiv: 2007.15102v1
[65]
Ringel G . Map Color Theorem. Die Grundlehren der mathematischen Wissenschaften, Band 209, New York: Springer-Verlag, 1974
[66]
Rosenberg A L . The Diogenes approach to testable fault-tolerant arrays of processors. IEEE Trans. Comput., 1983, 32 (10): 902- 910
[67]
Sanders D P . The Diogenes approach to testable fault-tolerant arrays of processors. J. Graph Theory., 1997, 24 (4): 341- 345
CrossRef Google scholar
[68]
Shahrokhi F , Shi W P . On crossing sets, disjoint sets, and pagenumber. J. Algorithm, 2000, 34 (1): 40- 53
CrossRef Google scholar
[69]
Shao Z , Liu Y , Li Z . Matching book embedding of the Cartesian product of a complete graph and a cycle. arXiv: 2002.00309v1
[70]
Shao Z , Liu Y , Li Z . Matching book thickness of Halin graphs. arXiv: 2008.13331v1
[71]
So H C . Some theoretical results on the routing of multilayer printed wiring boards. In: Proc. IEEE Symp. on Circuits and Systems, New York: IEEE, 1974, 296- 303
[72]
Sperfeld K . On the page number of complete odd-partite graphs. Discrete Math., 2013, 313 (17): 1689- 1696
CrossRef Google scholar
[73]
Swaminathan R P , Giraraj D , Bhatia D K . The pagenumber of the class of bandwidth-k graphs is k − 1. Inform. Process. Lett., 1995, 55 (2): 71- 74
CrossRef Google scholar
[74]
Sysło M M . Characterizations of outerplanar graphs. Discrete Math., 1979, 26 (1): 47- 53
CrossRef Google scholar
[75]
Tanaka Y , Shibata Y . On the pagenumber of trivalent Cayley graphs. Discrete Appl. Math., 2006, 154 (8): 1279- 1292
CrossRef Google scholar
[76]
Tarjan R . Sorting using networks of queues and stacks. J. Assoc. Comput. Mach., 1972, 19: 341- 346
CrossRef Google scholar
[77]
Thomassen C . Rectilinear drawings of graphs. J. Graph Theory, 1988, 12 (3): 335- 341
CrossRef Google scholar
[78]
Thompson C D . A Complexity Theory for VLSI. Ph.D. Thesis, Pittsburgh, PA: Carnegie Mellon University, 1980
[79]
Tutte W T . A theorem on planar graphs. Trans. Amer. Math. Soc., 1956, 82: 99- 116
CrossRef Google scholar
[80]
Wang M . Some results for embedding grid graphs in books. J. Zhengzhou Univ. (Nat. Sci. Ed.), 1997, 29 (2): 31- 34 (in Chinese)
[81]
Whitney H . A theorem on graphs. Ann. Math. 1931, 32: 378- 390
CrossRef Google scholar
[82]
Wigderson A . The complexity of the Hamiltonian circuit problem for maximal planar graphs. Technical Report 298, Department of EECS, Princeton University, February (1982)
[83]
Wood D R . Degree constrained book embeddings. J. Algorithms, 2002, 45 (2): 144- 154
CrossRef Google scholar
[84]
Yang W H , Meng J X . Embedding connected double-loop networks with even cardinality in books. Appl. Math. Lett., 2009, 22 (9): 1458- 1461
CrossRef Google scholar
[85]
Yannakakis M . Four pages are necessary and sufficient for planar graphs. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC ’86), New York, NY: ACM, 1986, 104- 108
[86]
Yannakakis M . Embedding planar graphs in four pages. J. Comput. System Sci., 1989, 38 (1): 36- 67
CrossRef Google scholar
[87]
Yannakakis M . Planar Graphs that Need Four Pages. J. Combin. Theory Ser. B, 2020, 145: 241- 263
CrossRef Google scholar
[88]
Zhang Y M , Chen G L . The results of embedding several graphs in books. Chinese J. Computer, 1993, 16 (7): 509- 518 (in Chinese)
[89]
Zhao B . The Book Embedding of Some Graphs. Ph.D. Thesis, Urumqi: Xinjiang University, 2016 (in Chinese)
[90]
Zhao B , Chen L H , Zhang Y P , Tian Y Z , Meng J X . On the page number of triple-loop networks with even cardinality. Ars Combin., 2016, 124: 257- 266
[91]
Zhao B , Meng J X . Embedding connected double-loop networks with odd cardinality in books. J. Xinjiang Univ. (Nat. Sci. Ed.), 2011, 28 (2): 152- 155
[92]
Zhao B , Tian Y Z , Meng J X . Embedding semistrong product of paths and cycles in books. J. Nat. Sci. Hunan Norm. Univ., 2015, 38 (6): 73- 77
[93]
Zhao B , Tian Y Z , Meng J X . On the page number of lexicographic product of paths and cycles in books. J. Xinjiang Univ. (Nat. Sci. Ed.), 2016, 33 (1): 1- 5
[94]
Zhao B , Xiong W , Tian Y Z , Meng J X . Embedding generalized Petersen graph in books. Chin. Ann. Math. Ser. B, 2016, 37 (3): 385- 394
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(351 KB)

Accesses

Citations

Detail

Sections
Recommended

/