Differential equations and Lie group representations

King Fai LAI

PDF(520 KB)
PDF(520 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (2) : 171-225. DOI: 10.1007/s11464-022-1008-z
SURVEY ARTICLE
SURVEY ARTICLE

Differential equations and Lie group representations

Author information +
History +

Abstract

We discuss the role of differential equations in Lie group representation theory. We use Kashiwara’s pentagon as a reference frame for the real representation theory and then report on some work arising from its p-adic analogue by Emerton, Kisin, Patel, Huyghe, Schmidt, Strauch using Berthelot’s theory of arithmetic D-modules and Schneider–Stuhler theory of sheaves on buildings.

Keywords

Differential equations / Lie groups / representation theory / arithmetic D-modules / flag variety

Cite this article

Download citation ▾
King Fai LAI. Differential equations and Lie group representations. Front. Math. China, 2022, 17(2): 171‒225 https://doi.org/10.1007/s11464-022-1008-z

References

[1]
Abbes A . Elements de Geometrie Rigid. Vol. I, Boston, MA: Birkhäuser, 2010
[2]
Abe Tomoyuki . Langlands correspondence for isocrystals and the existence of crystalline companions for curves. J. Amer. Math. Soc., 2018, 31 (4): 921- 1057
CrossRef Google scholar
[3]
Abe Tomoyuki . Langlands program for p-adic coefficients and the petits camarades conjecture. J. Reine Angew. Math., 2018, 734, 59- 69
[4]
Adams J , Barbasch D , Vogan D . The Langlands Classification and Irreducible Characters for Real Reductive Groups. Boston, MA: Birkhäuser, 1992
[5]
Akhiezer N I , I M Glazman I . Theory of Linear Operators in Hilbert Space. Dover Publications, 1993
[6]
Amice Y . Interpolation p-adique. Bull. Soc. Math. France, 1964, 92: 117- 180
[7]
Amice Y . Duals, In: Proceedings of the Conference on p-adic Analysis (Nijmegen, 1978). Report, 7806, Nijmegen: Katholieke Univ., 1978, 1- 15
[8]
Amice Y . Les nombres p-adiques. Presses Universitaires de France, 1975
[9]
Ardakov K . D-modules on rigid analytic spaces. In: Proceedings of the International Congress of Mathematicians, Seoul 2014, Vol. III, Seoul: Kyung Moon Sa, 2014, 1- 9
[10]
Ardakov K , Wadsley S . On irreducible representations of compact p-adic analytic groups. Ann. of Math. (2), 2013, 178 (2): 453- 557
CrossRef Google scholar
[11]
Ardakov K , Wadsley S . D-modules on rigid analytic spaces I, 2015, arXiv: 1501.02215v1
[12]
Atiyah M , Schmid W . A geometric construction of the discrete series for semisimple Lie groups. Invent. Math., 1977, 42: 1- 62
CrossRef Google scholar
[13]
Baldassarri F , Dwork B . On second order linear differential equations with algebraic solutions. Am. J. Math., 1979, 101: 42- 76
CrossRef Google scholar
[14]
Baldassarri F . On second order linear differential equations with algebraic solutions on algebraic curves. Am. J. Math., 1980, 102: 517- 535
CrossRef Google scholar
[15]
Baldassarri F . Continuity of the radius of convergence of differential equations on padic analytic curves. Invent math 182, 2010, 513- 584
[16]
Baldassarri F , Chiarellotto B . On Christol theorem. A generalization to systems of PDE with logarithmic singularities depending upon parameters. p-adic methods in number theory and algebraic geometry, Contemp. Math. 1992, 133, 1- 24
[17]
Bargmann V . Irreducible unitary representations of the Lorentz group. Ann. of Math. (2), 1947, 48: 568- 640
CrossRef Google scholar
[18]
Bass H , Milnor J , Serre J P . Solutions of the congruemce subgroups problem. IHES Pub. Math. 33, 1967, 59- 137
[19]
Beilinson A , Bernstein J . Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I Math., 1981, 292 (1): 15- 18
[20]
Beilinson A , Bernstein J , Deligne P . Faisceaux perverse, in Analysis and topology on singular spaces, I (Luminy, 1981), 5C171, Asterisque 100, Soc. Math. France, Paris, 1982
[21]
Beilinson A , Drinfeld V . Quantization of Hitchin’s integrable system and Hecke eigensheaves
[22]
Berline N , Getzler E , Vergne M . Heat kernels and Dirac operators. New York: SpringerVerlag, 1992
[23]
Berger L . Representations p-adiques et equations differentielles. Invent. Math., 2002, 148 (2): 219- 284 (in French)
CrossRef Google scholar
[24]
Berger L , Breuil C , Colmez P . Représentations p-adiques de Groupes p-adiques I-III. Astérisque, 2008, 319; (1): 2010, 330; 2010, 331
[25]
Bernstein J . Algebraic theory of D modules. Informal Notes ETH Zurich, 1983
[26]
Bernstein J , Lunts V . Equivariant sheaves and functors. Lecture Notes in Math., Vol. 1578. Berlin: Springer-Verlag, 1994
[27]
Berthelot P . Cohomologies cristalline des schemas de caracteristique p > 0. Lect Notes Math 407, Springer, 1974
[28]
Berthelot P . Cohomologie rigide et theorie de Dwork. Astérisque, 1984, 119–120 (3): 17- 49 (in French)
[29]
Berthelot P . Géométrie rigide et cohomologie des variétés algébriques de caractéristique p. Mém. Soc. Math. France (N.S.), 1986, 23 (3): 7- 32 (in French)
[30]
Berthelot P . Cohomologie rigide et theorie des D-modules. Lecture Notes in Math., Vol. 1454, Berlin: Springer, 1990 (in French)
[31]
Berthelot P . Cohomologie rigide et cohomologie rigide à supports propre. Première partie, Prépublication IRM, 1996, 96- 08, 91 pages, (in French)
[32]
Berthelot P . Cohérence deifférentielle des algèbres de fonctions survergences. C. R. Acad. Sci. Paris Sér. I Math., 1996, 323 (1): 35- 40 (in French)
[33]
Berthelot P . D-modules arithmétiques I. Ann. Sci. Éco. Norm. Super., 1996, 29 (2): 185- 272 (in French)
CrossRef Google scholar
[34]
Berthelot P . D-modules arithmétiques II. Mém. Soc. Math. Fr. (N.S.), 2000, 81, vi+136 pp (in French)
[35]
Berthelot, P. , Introduction à la théorie arithmétique des D-modules. Astérisque, 2002, 279: 1- 80
[36]
Bialynicki-Birula A . Some theorems on actions of algebraic groups. Ann. of Math. (2), 1973, 98: 480- 497
CrossRef Google scholar
[37]
Björk J . Analytic D-modules and applications. Mathematics and Its Applications, 247, Dordrecht: Kluwer Academic Publishers Group, 1993, xiv+581 pp
[38]
Böckle G , Pink R . Cohomological Theory of Crystals over Function Fields. EMS Tracts in Mathematics, Vol. 9, Zürich: European Mathematical Society (EMS), 2009
[39]
Bode A . D-modules on rigid analytic spaces. Dissertation, Cambridge: University of Cambridge, 2018
[40]
Borel A . Introduction aux groupes arithmétiques. Paris, Hermann, 1969
[41]
Borel A , et al. Algebraic D-modules. Perspectives in Mathematics, Vol. 2, Boston, MA: Academic Press, 1987
[42]
Borel A . Linear Algebraic Groups. Second Edition. New York: Springer-Verlag, 1991
[43]
Borevich A I , Shafarevich I R . Number Theory. New York: Academic Press, 1966
[44]
Bosch S , Güntzer U , Remmert R . Non-Archimedean Analysis. Berlin: Springer-Verlag, 1984
[45]
Bosch S . Lectures on Formal and Rigid Geometry. New York: Springer-Verlag, 2014
[46]
Bott R . Homogeneous vectors bundles. Ann. of Math. (2), 1957, 66: 203- 248
CrossRef Google scholar
[47]
Breuil C . The Emerging p-adic Langlands Programme, In: Proceedings of the International Congress of Mathematicians, Vol. II, New Delhi: Hindustan Book Agency, 2010, 203- 230
[48]
Breuil C . Induction parabolique et (ϕ, Γ)-modules. Algebra Number Theory, 2015, 9 (10): 2241- 2291 (in French)
CrossRef Google scholar
[49]
Bruhat F , Tits J . Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math., 1972, 41: 5-251; II. Inst. Hautes Études Sci. Publ. Math., 1984, 60: 197- 376 (in French)
[50]
Bruhat F , Tits J . Schémas en groupes et immeubles des groupes classiques sur un corps local, I. Bull. Soc. Math. France, 1984, 112(2): 259-301; II. Bull. Soc. Math. France, 1987, 115 (2): 141- 195 (in French)
[51]
Bruhat F , Tits J . Groupes algébriques sur un corps local. III. Compléments et applications à la cohomologie galoisienne. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1987, 34 (3): 671- 698 (in French)
[52]
Bushnell C , Henniart G . The Local Langlands Conjecture for GL(2). Berlin: SpringerVerlag, 2006
[53]
Caro D . Fonctions L associées aux D-modules arithmétiques, Cas des courbes. Compos. Math., 2006, 142 (1): 169- 206 (in French)
CrossRef Google scholar
[54]
Caro D . D-modules arithéetiques surcohérents. Application aux fonctions L. Ann. Inst. Fourier Grenoble, 2004, 54 (6): 1943- 1996 (in French)
CrossRef Google scholar
[55]
Caro D . Comparaison des foncteurs duaux des isocristaux surconvergents. Rend. Sem. Mat. Univ. Padova, 2005, 114: 131- 211 (in French)
[56]
Caro D . Fonctions L associées aux D-modules arithmétiques, Cas des courbes. Compos. Math., 2006, 142 (1): 169- 206 (in French)
CrossRef Google scholar
[57]
Caro D . Dévissages des F-complexes de D-modules arithmétiques en F-isocristaux surconvergents. Invent. Math., 2006, 166 (2): 397- 456 (in French)
CrossRef Google scholar
[58]
Caro D . F-isocristaux surconvergents et surcohérence différentielle. Invent. Math., 2007, 170 (3): 507- 539 (in French)
CrossRef Google scholar
[59]
Caro D . Log-isocristaux surconvergents et holonomie. Compos. Math., 2009, 145 (6): 1465- 1503 (in French)
CrossRef Google scholar
[60]
Caro D . D-modules arithmétiques surholonomes. Ann. Sci. Éc. Norm. Supér., 2009, 42 (1): 141- 192 (in French)
CrossRef Google scholar
[61]
Caro D . D-modules arithmétiques associés aux isocristaux surconvergents, Cas lisse. Bull. Soc. Math. France, 2009, 137 (4): 453- 543 (in French)
CrossRef Google scholar
[62]
Caro D . Une caractérisation de la surcohérence. J. Math. Sci. Univ. Tokyo, 2009, 16 (1): 1- 21 (in French)
[63]
Caro D . Holonomie sans structure de Frobenius et criteres d’holonomie. Ann. Inst. Fourier (Grenoble), 2011, 61 (4): 1437- 1454 (in French)
CrossRef Google scholar
[64]
Caro D . Pleine fidélité sans structure de Frobenius et isocristaux partiellement surconvergents. Math. Ann., 2011, 349 (4): 747- 805 (in French)
CrossRef Google scholar
[65]
Caro D . Stabilité de l’holonomie sur les variétés quasi-projectives. Compos. Math., 2011, 147 (6): 1772- 1792 (in French)
CrossRef Google scholar
[66]
Caro D . Sur la stabilité par produit tensoriel de complexes de D-modules arithmétiques, Manuscripta Math., 2015, 147 (112): 1- 41 (in French)
[67]
Caro D . Sur la préservation de la surconvergence par l’image directe d’un morphisme propre et lisse, Ann. Sci. Éc. Norm. Supér., 2015, 48 (1): 131- 169 (in French)
[68]
Caro D . La surcohérence entraine l’holonomie. Bull. Soc. Math. France, 2016, 144 (3): 429- 475 (in French)
CrossRef Google scholar
[69]
Caro D . Hard Lefschetz theorem in p-adic cohomology. Rend. Semin. Mat. Univ. Padova, 2016, 136: 225- 255
CrossRef Google scholar
[70]
Caro D . Systèmes inductifs cohérents de D-modules arithmétiques logarithmiques. stabilité par opérations cohomologiques. Doc. Math., 2016, 21: 1515- 1606 (in French)
[71]
Caro D , Tsuzuki N . Overholonomicity of overconvergent F-isocrystals over smooth varieties. Ann. of Math. (2), 2012, 176 (2): 747- 813
CrossRef Google scholar
[72]
Cartan H . Séminaire Henri Cartan. Paris, 1948- 1964
[73]
Casselman W . Introduction to the theory of admissible representations of p-adic reductive groups. UBC 1995
[74]
Chang Kung-Ching , Lin Yuanqu . Lectures in Functional Analysis. Beijing, Peking University Press, 2008 (in Chinese)
[75]
Chern S S . Chen, Weihuan Lectures on Differential Geometry. Beijing, Peking University Press, 1983 (in Chinese) (English translation by K. Lam, World Scientific Publishing Co, 1999.)
[76]
Christol G . Solutions algébriques des équations diffrentielles p-adiques, Théorie des nombres, Sémin. Delange-Pisot-Poitou, Paris 1981/82, Prog. Math., 1983, 38, 51- 58
[77]
Christol G . Modules differentiels et Equations differentielles p-adiques. Queens Papers in Pure Applied Math, Queen’s University, Canada, 1983
[78]
Christol G , Robba P . Équations différentielles p-adiques. Actualités Mathématiques, Paris: Hermann, 1994
[79]
Christol G , Dwork B . Modules différentiels sur des couronnes. Ann. Inst. Fourier (Grenoble), 1994, 44 (3): 663- 701
CrossRef Google scholar
[80]
Conrad B , Ellwood D , Kisin M , Skinner C . Galois Representations, Lecture Notes, Clay Mathematics Institute Summer School, Hawaii, 2009
[81]
Conrad B , et al. Autour des schémas en groupes. Vol. I. Panoramas et Synthèses, 42/43, 2014. Vol. II. Panoramas et Synthèses, 46, 2015. Société Mathématique de France
[82]
DeBacker S , Reeder M . Depth-zero supercuspidal L-packets and their stability. Ann. of Math. (2), 2009, 169 (3): 795- 901
CrossRef Google scholar
[83]
de Jong A J . Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math., 1995, 82: 5- 96 (in French)
CrossRef Google scholar
[84]
de Jong A J . Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math., 1996, 83: 51- 93
CrossRef Google scholar
[85]
Deligne P . Équations différentielles à points singuliers réguliers. Lecture Notes in Math., Vol. 163. Berlin: Springer-Verlag, 1970
[86]
Demazure M , Gabriel P . Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Avec un appendice Corps de classes local par Michiel Hazewinkel. Paris Masson and Cie; Amsterdam: North-Holland Publishing Co., 1970
[87]
Diao H S , Lan K W , Liu R C , Zhu X W . Logarithmic Riemann-Hilbert correspondences for rigid varieties, 2018, arXiv: 1803.05786v2
[88]
Digne F , Michel J . Representation of Finite Groups of Lie Type. Cambridge: Cambridge University Press, 1991
[89]
Dimca A . Sheaves in Topology. Berlin: Springer-Verlag, 2004
[90]
Dixon J , du Sautoy M , Mann A , Segal D . Analytic Prop-p Groups. Second Edition. Cambridge: Cambridge University Press, 1999
[91]
Duistermaat J , Kolk J . Lie groups. Heidelberg: Springer-Verlag, 2000
[92]
Dwork B . On p-adic differential equations. I Soc. Math. Fr. Mem. 39–40 (1974) 27–37; II Ann. of Math. 1973, 98: 366–376; III Inv. Math. 1973, 20: 35–45; IV Ann. Eco. Norm. Sup. 1973, 6: 295- 315
CrossRef Google scholar
[93]
Dwork B . Bessel functions as p-adic functions of the argument. Duke Math J 1974, 41: 711- 738
[94]
Dwork B , Robba P . Effective p-adic bounds for solutions of homogeneous linear differential equations. Trans. Amer. Math. Soc. 1980, 259: 559- 577
[95]
Dwork B . Lectures on p-adic Differential Equations. New York: Springer-Verlag, 1982
[96]
Dwork B , Gerotto G , Sullivan F . An Introduction to G Functions. Princeton: Princeton University Press, 1994
[97]
Emerton M . Locally analytic vectors in representations of locally p-adic analytic groups. Mem. Amer. Math. Soc., 2017, 248 (1175): iv+158 pp
[98]
Emerton M . On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Invent. Math., 2006, 164 (1): 1- 84
CrossRef Google scholar
[99]
Emerton M . Jacquet modules of locally analytic representations of p-adic reductive groups I. Constrction and first properties. Ann. Sci. Ec. Norm. Super. (4), 2006, 39 (5): 775- 839
CrossRef Google scholar
[100]
Emerton M . Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction, preprint, 2007
[101]
Emerton M , Kisin M . The Riemann-Hilbert correspondence for unit F-crystals. Astérisque, 2004, 293, vi+257 pp
[102]
Faltings G . p-adic Hodge theory, J. Amer. Math. Soc., 1988, 1 (1): 255- 299
[103]
Fan T Q . D-modules on smooth rigid analytic varieties and locally analytic representations, Ph. D. Thesis, Chicago: University of Chicago, 2017
[104]
Féaux de Lacroix C T . p-adische Distributionen, Diplomarbeit Köln, 1992
[105]
Féaux de Lacroix C T . Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Schriftenreihe Math. Inst. Univ. Münster 3. Ser., Heft 23, Münster: Math. Inst. Univ. Münster, 1999
[106]
Feng Keqin . Algebraic Number Theory. Beijing, Science Press, 2000
[107]
Fesenko I , Vostokov S . Local fields and their extensions. Amer. Math. Soc. 2001
[108]
Folland G . A course in abstract harmonic analysis. Chapman and Hall/CRC, 2015
[109]
Fontaine J M , Mazur B . Geometric Galois representations. In: Elliptic Curves, Modular Forms and Fermat’s Last Theorem. Hong Kong: International Press, 1995, 41- 78
[110]
Frenkel E , Gaitsgory D , Vilonen K . On the geometric langlands conjecture. J. Amer. Math. Soc., 2002, 15 (2): 367- 417
[111]
Frenkel E . Lectures on the Langlands program and conformal field theory. In: Frontiers in Number Theory, Physics, and Geometry, II, Berlin: Springer-Verlag, 2007, 387- 533
[112]
Fresnel J , van der Put M . Rigid Analytic Geometry and Its Applications. Boston, MA: Birkhäuser, 2004
[113]
Friedrich T . Dirac operators in Riemannian Geometry. Providence, RI: AMS, 2000
[114]
Fu L . Algebraic Geometry. Beijing: Tsinghua Univ. Press, 2006
[115]
Fu L . Etale Cohomology. Singapore: World Sci. Publ., 2015
[116]
Fujiwara K , Kato F . Foundations of Rigid Geometry I. Zürich: European Mathematical Society (EMS), 2018
[117]
Gaitsgory D . On a vanishing conjecture appearing in the geometric Langlands correspondence. Ann. of Math. (2), 2004, 160 (2): 617- 682
CrossRef Google scholar
[118]
Gelfand S , Manin Yu . Methods of Homological Algebra. Springer, 2003
[119]
Golubev V V . Lectures on the Analytic Theory of Differential Equations. (in Russian) Chinese Translation by Lu J K, Qi M Y. Beijing: Higher Education Press, 1956
[120]
Griffiths P , Harris J . Principles of Algebraic Geometry. New York: John Wiley & Sons, 1978
[121]
Grigor’yan A . Heat Kernel and Analysis on Manifolds. Providence, RI: AMS, 2009
[122]
Grosse-Klönne E . From pro-p Iwahori-Hecke modules to (ϕ, Γ)-modules I. Duke Math. J., 2016, 165 (8): 1529- 1595
[123]
Grothendieck A . Sur quelques points d’algèbre homologique. Tôhoku Math. J. (2), 1957, 9: 119- 221 (in French)
[124]
Grothendieck A , Dieudonné J , Eléments de géométrie algébrique . [EGA I]. Inst. Hautes Études Sci. Publ. Math., 1960, 4, 228 pp. [EGA II], 1961, 8; [EGA III], 1961, 11; 1963, 17; [EGA IV], 1964, 20; 1965, 24; 1966, 28; 1967, 32
[125]
Grothendieck A . On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ., 1966, 29: 95- 103
CrossRef Google scholar
[126]
Grothendieck A . Groupes Barsotti-Tate et cristaux de Dieudonne, Montreal, Les Presse de l’Universite Montreal, 1974
[127]
Harish-Chandra . Plancherel formula for the 2 × 2 real unimodular group. Proc. Nat. Acad. Sci. U.S.A., 1952, 38: 337- 342
CrossRef Google scholar
[128]
Harish-Chandra . Some results on differential equations and differential equations and semisimple Lie groups. Manuscript 1960, Harish-Chandra Collected Papers, New York: Springer-Verlag, 1984, Vol. III, 7–48, 57–120
[129]
Harish-Chandra . Discrete series for semisimple Lie groups. I, II. Acta Math., 1965, 113: 241–318; 1966, 116: 1- 111
[130]
Harish-Chandra . Harmonic analysis on reductive Lie groups, I. J. Funct. Anal., 1975, 19: 104- 204
CrossRef Google scholar
[131]
Harish-Chandra . Collected Papers. (Editor V. S. Varadarajan). Springer Verlag, 1984
[132]
Hartshorne R . Algebraic Geometry. New York: Springer-Verlag, 1977
[133]
Hauser H . On the problem of resolution of singularities in positive characteristic. Bull. Amer. Math. Soc., 2010, 47 (1): 1- 30
[134]
He Y Z . Algebroid Functions and Ordinary Differential Equations, Beijing: Science Press, 1988 (in Chinese)
[135]
Hewitt E , Ross K . Abstract Harmonic Analysis I and II. Springer, 1979
[136]
Hotta R , Takeuchi K , Tanisaki T . D-modules, Perverse Sheaves, and Representation Theory. Progr. Math., Vol. 236, Boston, MA: Birkhäuser, 2008
[137]
Howe R , Moy A . Harish-Chandra Homomorphisms for p-adic Groups. CBMS Regional Conference Series in Mathematics, Providence, RI: AMS, 1985
[138]
Huang J S , Pandžić P . Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc., 2002, 15: 185- 202
[139]
Huang J S , Pandžić P . Dirac Operators in Representation Theory. Boston, MA: Birkhäuser, 2006
[140]
Huber R . Etale cohomology of rigid analytic varieties and adic spaces. Aspects of Mathematics, E30, Braunschweig: Friedr. Vieweg and Sohn, 1996
[141]
Humphreys J E . Introduction to Lie Algebras and Representation Theory. New York: Springer-Verlag, 1972
[142]
Humphreys J E . Linear Algebraic Rroups. New York: Springer-Verlag, 1975
[143]
Humphreys J E . Arithmetic groups Lecure Notes Math. 789, Springer, 1980
[144]
Huyghe C . D-affinité de l’espace projectif. Compositio Math., 1997, 108 (3): 277- 318
CrossRef Google scholar
[145]
Huyghe C . Un théorème de Beilinson-Bernstein pour les D-modules arithmétiques. Bull. Soc. Math. France, 2009, 137 (2): 159- 183 (in French)
CrossRef Google scholar
[146]
Huyghe C , Schmidt T . D-modules arithmétiques sur la variété de drapeaux. https://perso.univ-rennes1.fr/tobias.schmidt/locflag New Version.pdf
[147]
Huyghe C , Schmidt T . D-modules arithmétiques, distributions et localisation. 2014, arXiv: 1401.6901v3
[148]
Huyghe C , Schmidt T , Strauch M . Arithmetic structures for differential operators on formal schemes. https://hal.archives-ouvertes.fr/hal-01614108
[149]
Huyghe C , Patel D , Schmidt T , Strauch M . D-affinity of formal models of flag varieties. 2015, arXiv: 1501.05837v2
[150]
Iversen B . Cohomology of sheaves. Springer, 19870
[151]
Iwahori N , Matsumoto H . On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Inst. Hautes Études Sci. Publ. Math., 1965, 25: 5- 48
CrossRef Google scholar
[152]
Jacobson N . Basic Algebra I, II. Freeman and Co., 1985
[153]
Jacobson N . Lie Algebra. Dover Books, 2003
[154]
Jantzen J C . Representations of Algebraic Groups. Providence, RI: AMS, 2007
[155]
Kashiwara M . The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci., 1984, 20 (2): 319- 365
CrossRef Google scholar
[156]
Kashiwara M . Representation theory and D-modules on flag varieties. Astérisque, 1989, 173–174: 9, 55- 109
[157]
Kashiwara M . D-modules and representation theory of Lie groups. Ann. Inst. Fourier, 1993, 43 (5): 1597- 1618
CrossRef Google scholar
[158]
Kashiwara M . Algebraic Study of Systems of Partial Differential Equations. Mémoires de la Société Mathématique de France, 1995, 63, I1-XIV72 pp
[159]
Kashiwara M . D-modules and Microlocal Calculus. Providence, RI: AMS, 2003
[160]
Kashiwara M . Equivariant Derived Category and Representation of Real Semisimple Lie Groups. Lecture Notes in Math., Vol. 1931, Berlin: Springer-Verlag, 2008
[161]
Kashiwara M , Oshima T . Systems of differential equations with regular singularities and their boundary value problems. Ann. of Math. (2), 1977, 106 (1): 145- 200
CrossRef Google scholar
[162]
Kashiwara M , Kowata A , Minemura K , Okamoto K , Oshima T , Tanaka T . Eigenfunctions of invariant differential operators on a symmetric space. Ann. of Math. (2), 1978, 107 (1): 1- 39
CrossRef Google scholar
[163]
Kashiwara M , Schapira P . Sheaves on Manifolds. Berlin: Springer-Verlag, 1990
[164]
Kashiwara M , Schapira P . Categories and sheaves. Springer-Verlag, Berlin, 2006
[165]
Kashiwara M , Schmid W . Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups. Lie Theory and Geometry, Progr. Math., Vol, 123, Boston, MA: Birkhäuser, 1994
[166]
Katz N . Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math., 1970, 39: 175- 232
CrossRef Google scholar
[167]
Katz N . Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Invent. Math., 1972, 18: 1- 118
CrossRef Google scholar
[168]
Katz N . p-adic properties of modular forms, Lecture Notes in Math. , Vol. 350, Berlin: Springer-Verlag, 1973
[169]
Katz N . Exponential Sums and Differential Equations. Annals of Mathematics Studies, Princeton: Princeton Universiy Press, 1990
[170]
Kaup L , Kaup B . Holomorphic Functions of Several Variables. Berlin: Walter de Gruyter, 1983
[171]
Kazhdan D , Lusztig G . Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math., 1987, 87 (1): 153- 215
CrossRef Google scholar
[172]
Kedlaya K S . p-adic Differential Equations. Cambridge: Cambridge University Press, 2010
[173]
Kiehl R , Weissauer R . Weil conjectures, perverse sheaves and l’adic cohomology. Springer 2001
[174]
Knapp A T . Representation Theory of Semisimple Groups. Princeton: Princeton University Press, 1986
[175]
Knapp A T . Lie Groups–Beyond an Introduction. Boston, MA: Birkhäuser, 2002
[176]
Knapp A T . Advanced Real Analysis. Boston, MA: Birkhäuser, 2005
[177]
Knapp A T , Vogan D . Cohomological Induction and Unitary Induction. Princeton: Princeton University Press, 1995
[178]
Kohlhaase J . Coefficient systems on the Bruhat-Tits building and pro-p. Iwahori-Hecke modules, 2018, arXiv: 1802.10502v1
[179]
Kolchin E R . Differential Algebra and Algebraic Groups. New York: Academic Press, 1976
[180]
Kollár J . Lectures on Resolution of Singularities. Princeton: Princeton University Press, 2007
[181]
Lang S . Algebra. Springer, 2002
[182]
Lai K F . Arithmetic D-modules and representations. 2008, arXiv: 0802.2196v1 [math. NT]
[183]
Lai K F , Lan Yizhong . Representation Theory of Second order matrix Group and Theory of Automorphic Representations. Beijing, Peking University Press, (in Chinese) 1990
[184]
Lai K F , Zhao Chunlai . Introduction to Modular Curve. Beijing: Peking University Press, 2002 (in Chinese)
[185]
Lai K F , Chen Zhijie , Zhao Chunlai . Introduction to Algebraic Groups. Beijing: Science Press, 2006 (in Chinese)
[186]
Lai K F , Feng Xuning . Introduction to Topological Groups. Beijing: Science Press, 2014 (in Chinese)
[187]
Lai K F , Bai Zheng-Jian , Chao Kuok-Fai . Advanced Linear Algebra. Beijing: Higher Education Press, 2014 (in Chinese)
[188]
Lai K F . Algebraic Number Theory. Beijing: Higher Education Press, 2016 (in Chinese)
[189]
Lai K F . Algebraic K Theory. Beijing: Science Press, 2018 (in Chinese)
[190]
Lai K F . Differential equations and Lie group representations. Advances in Math (China), 2019. 48 (3): 257- 301 (in Chinese)
[191]
Lai K F . Buildings and Groups III. Chinese Quart. J. of Math., 36 (1) (2021), 1- 31
[192]
Langlands R P . On the classification of irreducible representations of real algebraic groups. Representation theory and harmonic analysis on semisimple Lie groups. Math. Surveys Monogr., Vol. 31, Providence, RI: AMS, 1989, 101- 170
[193]
Lazard M . Les zeros des fonctions analytiques d’une variable sur un corps value complet. 3 Inst. Hautes Études Sci. Publ. Math., 1962, 14: 47- 75
CrossRef Google scholar
[194]
Lazard M . Groupes analytiques p-adiques. Inst. Hautes Études Sci. Publ. Math., 1965, 26: 389- 603
[195]
Lazda C , Pal A . Rigid Cohomology over Laurent Series Fields. Algebra and Applications, Vol. 21. Cham: Springer, 2016
[196]
Le Potier J . Lectures on Vector Bundles. Cambridge: Cambridge University Press, 1997
[197]
Le Stum B . Rigid Cohomology. Cambridge Tracts in Mathematics, Vol. 172, Cambridge: Cambridge University Press, 2007
[198]
Le Stum B . The Overconvergent Site. Mém. Soc. Math. France (N.S.), 2012, 2 (127): 108
[199]
Levitan B , Sargsjan I . Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators. Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs, Vol. 39, Providence, RI: AMS, 1975
[200]
Li Kezheng . First Step in Algebraic Geometry. Beijing: Science Press, 2004 (in Chinese)
[201]
Li Kezheng . Commutative Algebra and Homological Algebra. Beijing: Science Press, 2018 (in Chinese)
[202]
Li Wen-Wei . Methods in Algebra. volume I, Beijing: Higher Education Press, 2016 (in Chinese)
[203]
Li H S , van Oystaeyen F . Zariskian Filtrations. Dordrecht: Kluwer, 1996
[204]
Liu R C , Zhu X W . Rigidity and a Riemann-Hilbert correspondence for p-adic local systems. Invent. Math., 2017, 207 (1): 291- 343
CrossRef Google scholar
[205]
Lusztig G . Affine Hecke algebras and their graded version. J. Amer. Math. Soc., 1989, 2 (3): 599- 635
CrossRef Google scholar
[206]
Lutz E . Sur l’equation y2 = x3AxB dans les corps p-adiques. J. Reine Angew. Math., 1937, 177: 238- 247
[207]
Mac Lane S . Categories for the working mathematician. Springer, 1978
[208]
McConnell J . On completions of non-commutative Noetherian rings. Comm. Algebra, 1978, 6 (14): 1485- 1488 (in French)
CrossRef Google scholar
[209]
Mebkhout Z . Une equivalence de categories. Compositio Math., 1984, 51 (1): 51- 63 (in French)
[210]
Mebkhout Z . Le théorème de comparison entre cohomologies de de Rham d’ume variété algébrique complexe et le théorème d’existence de Riemann. Inst. Hautes Études Sci. Publ. Math., 1989, 69: 47- 89 (in French)
CrossRef Google scholar
[211]
Mebkhout Z . Le formalisme des six operations de Grothendieck pour les DX-modules coherents. Travaux en Cours [Works in Progress], Vol. 35, Hermann, Paris, 1989 (in French)
[212]
Milne J . Algebraic groupes. Cambridge University Press, 2017
[213]
Mirković I , Uzawa T , Vilonen K . Matsuki correspondence for sheaves. Invent. Math., 1992, 109 (2): 231- 245
[214]
Mirković I , Vilonen K . Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. of Math. (2), 2007, 166 (1): 95- 143
CrossRef Google scholar
[215]
Monna A . Analyse Non-archimedean. Springer, Springer, 1970
[216]
Moy A , Prasad G . Unrefined minimal K-types for p-adic groups. Invent. Math., 1994, 116 (123): 393- 408
[217]
Nastacascu C , van Oystaeyen F . Graded Ring Theory, North-Holland Mathematical Library. Vol. 28, Amsterdam: North-Holland Publishing Co., 1982
[218]
Okonek C , Schneider M , Spindler H . Vector Bundles on Complex Projective Spaces. Boston, MA: Birkhäuser, 1980
[219]
Ollivier R , Schneider P . Pro-p Iwahori-Hecke algebras are Gorenstein. J. Inst. Math. Jussieu., 2014, 13 (4): 753- 809
CrossRef Google scholar
[220]
Ollivier R , Schneider P . A canonical torsion theory for pro-p Iwahori-Hecke modules. Adv. Math., 2018, 327: 52- 127
CrossRef Google scholar
[221]
Ollivier R , Vigneras M F . Parabolic induction in characteristic p. Selecta Mathematica, 2018, 24 (5): 3973- 4039
CrossRef Google scholar
[222]
Olver P . Applications of Lie Groups to Differential Equations. New York: SpringerVerlag, 1986
[223]
Parthasarathy K R . Dirac operators and the discrete series. Ann. of Math. (2), 1972, 96: 1- 30
CrossRef Google scholar
[224]
Patel D , Schmidt T , Strauch M . Integral models of P1 and analytic distribution algebras for GL(2). Münster J. Math., 2014, 7 (1): 241- 271
[225]
Patel D , Schmidt T , Strauch M . Locally analytic representations and sheaves on the Bruhat-Tits building algebra and number theory. Algebra Number Theory, 2014, 8 (6): 1365- 1445
CrossRef Google scholar
[226]
Patel D , Schmidt T , Strauch M . Locally analytic representations of GL(2, L) via semistable models of P1, 2014, arXiv: 1410.1423
[227]
Patel D , Schmidt T , Strauch M . Arithmetic differential operators on a semistable model of P1. Math. Z., 2018
CrossRef Google scholar
[228]
Prosmans F . Algèbre homologiue quasi-abélienne. LAGA, Universite Paris-Nord, 1995
[229]
Prosmans F . Derived limits in quasi-abelian categories. Bull. Soc. R. Sci. Lige 68, No. 5-6, 335- 401 (1999)
[230]
Prosmans F . Derived categories for functional analysis. Publ. Res. Inst. Math. Sci. 36 (56), 1983 (2000)
[231]
Rogawski J D . On modules over the Hecke algebra of a p-adic group. Invent. Math., 1985, 79 (3): 443- 465
CrossRef Google scholar
[232]
Robba P . On the Index of p-adic Differential Operators. I Annals of Mathematics, 2nd Ser., Vol. 101, No. 2. (1975), pp. 280–316; II Duke Math J 43(1976) 19–31; III Asterisque 119–120 (1984) 191–266; IV Ann. l’inst Fourier, 35 (1985) 13- 55
[233]
Ronan M , Smith S . Sheaves on buildings and modular representations of Chevalley groups. J. Algebra, 1985, 96 (2): 319- 346
CrossRef Google scholar
[234]
von Rooij A . Non-archimedean Functional analysis. Marcel Dekker, 1978
[235]
Rosenberg S . The Laplacian on a Riemannian Manifold. Cambridge: Cambridge University Press, 1997
[236]
Saper L , Stern M . L2-cohomology of arithmetic varieties. Ann. of Math. (2), 1990, 132 (1): 1- 69
CrossRef Google scholar
[237]
Saper L . On the cohomology of locally symmetric spaces and of their compactifications. 2003, arXiv: math/0306403v2 [math.RT]
[238]
Schaefer H . Topological vector spaces. Springer, 1980
[239]
Schapira P , Schneiders J P . Derived categories of filtered objects. in, Guillermou, Stphane et al., Subanalytic sheaves and Sobolev spaces. Paris: Soc. Math. France, Astérisque, 2016, 383, 103- 120
[240]
Schmidt T . Analytic vectors in continuous p-adic representations. preprint, 2009
[241]
Schmidt T . Hecke algebras and affine flag varieties in characteristic p. J. Pure Appl. Algebra, 2016, 220 (9): 3233- 3247
CrossRef Google scholar
[242]
Schmid W . On a conjecture of Langlands. Ann. of Math. (2), 1971, 93: 1- 42
CrossRef Google scholar
[243]
Schmid W . L2 cohomology and the discrete series. Ann. of Math. (2), 1976, 103 (2): 375- 394
[244]
Schmid W . Boundary value problems for group invariant differential equations. Astérisque, 1985, Numéro Hors Série: 311- 321
[245]
Schmid W , Wolf J . Globalizations of Harish-Chandra modules. Bull. Amer. Math. Soc. (N.S.), 1987, 17 (1): 117- 120
CrossRef Google scholar
[246]
Schmid W , Wolf J . Geometric quantization and derived functor modules for semisimple Lie groups. J. Funct. Anal., 1990, 90: 48- 112
CrossRef Google scholar
[247]
Schneider P . Nonarchimedean Functional Analysis. Heidelberg: Springer-Verlag, 2002
[248]
Schneider P . p-adic Lie Groups. Heidelberg: Springer-Verlag, 2011
[249]
Schneider P , Stuhler U . Resolutions for smooth representations of the general linear group over a local field. J. Reine Angew. Math. 436, (1993) 19- 32
[250]
Schneider P , Stuhler U . Representation theory and sheaves on the Bruhat-Tits building. Inst. Hautes Études Sci. Publ. Math., 1997, 85: 97- 191
CrossRef Google scholar
[251]
Schneider P , Teitelbaum J . p-adic Fourier theory. Doc. Math., 2001, 6: 447- 481
[252]
Schneider P , Teitelbaum J . U(g)-finite locally analytic distributions. Represent. Theory, 2001, 5: 111- 128
CrossRef Google scholar
[253]
Schneider P , Teitelbaum J . Locally analytic distributions and p-adic representation theory, with applications to GL(2). J. Amer. Math. Soc., 2002, 15 (2): 443- 468
[254]
Schneider P , Teitelbaum J . Algebras of p-adic distributions and admissible representations. Invent. Math., 2003, 153 (1): 145- 196
CrossRef Google scholar
[255]
Schneider P , Teitelbaum J . Duality for admissible locally analytic representations. Represent. Theory, 2005, 9: 297- 326
CrossRef Google scholar
[256]
Schneider P , Vigneras M F . A functor from smooth o-torsion representations to (φ, Γ)- modules. Clay Math. Proc., 2011, 13: 525- 601
[257]
Schneider P , Vigneras M F , Zábrádi G . From étale P+-representations to G-equivariant sheaves on G/P. In: Automorphic Forms and Galois Representations, Vol. 2, Lecture Note Series, Vol. 415, Cambridge: Cambridge Univ. Press, 2014, 248- 366
[258]
Schneider P , Zink W . Algebraic theory of tempered representations of padic groups. I. J. Inst. Math. Jussieu, 2007, 6(4): 639-688; II. Geom. Funct. Anal., 2008, 17: 2018- 2065
[259]
Schneiders J P . Quasi-abelian categories and sheaves. Mém. Soc. Math. Fr. (N.S.), 1999, No. 76
[260]
Schubert H . Categories. Springer, 1972
[261]
Schürmann J . Topology of Singular Spaces and Constructible Sheaves. Basel: Birkhäuser, 2003
[262]
Serre J P . Geometrie alg6brique et geometrie analytique. Ann. Inst. Fourier, 1956, 6: 1- 42
CrossRef Google scholar
[263]
Serre J P . Lie Algebras and Lie Groups. New York: Benjamin, 1965
[264]
Serre J P . Local fields. Springer, 1979
[265]
Shafarevich I R . Basic Algebraic Geometry. Berlin: Springer-Verlag, 1977
[266]
Shah Tao-Shing , Yang Yali . Introduction to linear topological spaces. Shanghai Science and Technology Press, 1986 (in Chinese)
[267]
Sigloch H . Homotopy theory for rigid analytic varieties. Dissertation, Freiburg: Universität of Freiburg, 2016
[268]
Singer M , Van der Put M . Galois theory of linear differential equations. New York: Springer-Verlag, 2003
[269]
Springer T . Linear Algebraic Groups. Boston, MA: Birkhäuser, 1998
[270]
Taylor J L . Several complex variables with connections to algebraic geometry and Lie groups. Providence, RI: AMS, 2002
[271]
Tits J . Reductive groups over local fields. In: Automorphic Forms, Representations, and L-Functions, Proceedings Symp. Pure Math. 33, Part 1, 1979, 17: 2018- 2065
[272]
tom Dieck T . Transformation Groups, Walter de Gruyter, 1987
[273]
Treves F . Topological Vector Spaces, Distributions and Kernel. New York: Academic Press, 1967
[274]
Tsujishita T . On variational bicomplexes associated to differential equations. Osaka J. Math., 1982, 19: 311- 363
[275]
Van den Ban E , Crainic M . Analysis on manifolds, Utrecht University Notes
[276]
Varadarajan V S . Lie Groups, Lie Algebras, and Their Representations. Englewood Cliffs, NJ: Prentice Hall, 1974
[277]
Varadarajan V S . Harmonic Analysis on Real Reductive Groups. Lecture Notes in Math., Vol. 576, New York: Springer-Verlag, 1977
[278]
Varadarajan V S . Introduction to Harmonic analysis on semisimple Lie Groups. Cambridge University Press, 1989
[279]
Vigneras M F . Représentations l-modulaires d’un groupe réductif p-adique avec lp. Progress Math., Vol. 137, Boston, MA: Birkhäuser, 1996 (in French)
[280]
Vigneras M F . Pro-p-Iwahori Hecke ring and supersingular Fp-representations. Math. Ann., 2005, 331: 523- 556 (Erratum: 2005, 333(3): 699–701)
[281]
Vigneras M F . Algèbres de Hecke affines génériques. Represent. Theory, 2006, 10: 1- 20 (in French)
CrossRef Google scholar
[282]
Vigneras M F . The pro-pIwahori Hecke algebra of a reductive p-adic group. I. Compos. Math., 2016, 152 (1/2): 653- 753
[283]
Vinogradov A M . Cohomological Analysis of Partial Differential Equations and Secondary Calculus. Translations of Mathematical Monographs, Vol. 204, Providence RI: AMS, 2001
[284]
Virrion A . Dualité locale et holonomie pour les D-modules arithmétiques. Bull. Soc. Math. France, 128 (2000) 101- 168
[285]
Virrion A . Trace et dualité relative pour les D-modules arithmétiques. In Geometric aspects of Dwork theory. Vol. I, II, pages 1039–1112. Walter de Gruyter GmbH & Co. KG, Berlin, 2004
[286]
Vitolo R . Finite order variational bicomplexes. Math. Proc. Cambridge Philos. Soc., 1999, 125 (2): 321- 333
CrossRef Google scholar
[287]
Wallach N . Real Reductive Groups. 1, 2, New York: Academic Press, 1988
[288]
Warner G . Harmonic Analysis on Semisimple Lie Groups. 1, 2, New York: SpringerVerlag, 1972
[289]
Weiss R M . The Structure of Spherical Buildings. Princeton: Princeton University Press, 2003
[290]
Weiss R M . The Structure of Affine Buildings. Princeton: Princeton University Press, 2009
[291]
Wells Jr R . Differential analysis on commplex manifolds. Prentice-Hall Inc., 1973
[292]
Wu Hung-Hsi , Chen Weihuan . Selected Topics in Riemannian Geometry. Beijing: Peking University Press, 1993 (in Chinese)
[293]
Yu J K . Smooth models associated to concave functions in Bruhat-Tits. theory, 2002
[294]
Zhelobenko D . Principal Structures and Methods of Representation Theory. Providence, RI: AMS, 2006
[295]
Zhu X W . Affine Grassmannians and the geometric Satake in mixed characteristic. Ann. of Math. (2), 2017, 185 (2): 403- 492
[296]
Zhu Y C . Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc., 1996, 9 (1): 237- 302
CrossRef Google scholar
[297]
Zucker S . L2-cohomology and intersection homology of locally symmetric varieties. II. Compositio Math., 1986, 59 (3): 339- 398

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(520 KB)

Accesses

Citations

Detail

Sections
Recommended

/